Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765943

RESUMO

This Editorial provides summaries and an overview of research and review articles published in the Sensors journal, volumes 21 (2021), 22 (2022), and 23 (2023), within the biomedical Special Issue "Portable Electronic-Nose Devices for Noninvasive Early Disease Detection", which focused on recent sensors, biosensors, and clinical instruments developed for noninvasive early detection and diagnosis of human and animal diseases. The ten articles published in this Special Issue provide new information associated with recent electronic-nose (e-nose) and related volatile organic compound (VOC)-detection technologies developed to improve the effectiveness and efficiency of diagnostic methodologies for early disease detection prior to symptom development. For review purposes, the summarized articles were placed into three broad groupings or topic areas, including veterinary-wildlife pathology, human clinical pathology, and the detection of dietary effects on VOC emissions. These specified categories were used to define sectional headings devoted to related research studies with a commonality based on a particular disease being investigated or type of analytical instrument used in analyses.


Assuntos
Nariz Eletrônico , Compostos Orgânicos Voláteis , Animais , Humanos , Diagnóstico Precoce , Animais Selvagens , Eletrônica
2.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514589

RESUMO

Food quality assurance is an important field that directly affects public health. The organoleptic aroma of food is of crucial significance to evaluate and confirm food quality and origin. The volatile organic compound (VOC) emissions (detectable aroma) from foods are unique and provide a basis to predict and evaluate food quality. Soybean and corn oils were added to sesame oil (to simulate adulteration) at four different mixture percentages (25-100%) and then chemically analyzed using an experimental 9-sensor metal oxide semiconducting (MOS) electronic nose (e-nose) and gas chromatography-mass spectroscopy (GC-MS) for comparisons in detecting unadulterated sesame oil controls. GC-MS analysis revealed eleven major VOC components identified within 82-91% of oil samples. Principle component analysis (PCA) and linear detection analysis (LDA) were employed to visualize different levels of adulteration detected by the e-nose. Artificial neural networks (ANNs) and support vector machines (SVMs) were also used for statistical modeling. The sensitivity and specificity obtained for SVM were 0.987 and 0.977, respectively, while these values for the ANN method were 0.949 and 0.953, respectively. E-nose-based technology is a quick and effective method for the detection of sesame oil adulteration due to its simplicity (ease of application), rapid analysis, and accuracy. GC-MS data provided corroborative chemical evidence to show differences in volatile emissions from virgin and adulterated sesame oil samples and the precise VOCs explaining differences in e-nose signature patterns derived from each sample type.


Assuntos
Óleo de Gergelim , Compostos Orgânicos Voláteis , Óleo de Gergelim/análise , Óleo de Gergelim/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Nariz Eletrônico , Redes Neurais de Computação
3.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991597

RESUMO

The established efficacy of electronic volatile organic compound (VOC) detection technologies as diagnostic tools for noninvasive early detection of COVID-19 and related coronaviruses has been demonstrated from multiple studies using a variety of experimental and commercial electronic devices capable of detecting precise mixtures of VOC emissions in human breath. The activities of numerous global research teams, developing novel electronic-nose (e-nose) devices and diagnostic methods, have generated empirical laboratory and clinical trial test results based on the detection of different types of host VOC-biomarker metabolites from specific chemical classes. COVID-19-specific volatile biomarkers are derived from disease-induced changes in host metabolic pathways by SARS-CoV-2 viral pathogenesis. The unique mechanisms proposed from recent researchers to explain how COVID-19 causes damage to multiple organ systems throughout the body are associated with unique symptom combinations, cytokine storms and physiological cascades that disrupt normal biochemical processes through gene dysregulation to generate disease-specific VOC metabolites targeted for e-nose detection. This paper reviewed recent methods and applications of e-nose and related VOC-detection devices for early, noninvasive diagnosis of SARS-CoV-2 infections. In addition, metabolomic (quantitative) COVID-19 disease-specific chemical biomarkers, consisting of host-derived VOCs identified from exhaled breath of patients, were summarized as possible sources of volatile metabolic biomarkers useful for confirming and supporting e-nose diagnoses.


Assuntos
COVID-19 , Compostos Orgânicos Voláteis , Humanos , Nariz Eletrônico , COVID-19/diagnóstico , SARS-CoV-2 , Biomarcadores , Testes Respiratórios/métodos
4.
Ecol Evol ; 11(19): 13153-13165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646459

RESUMO

We studied the impact of flooding and light availability gradients on sexual and asexual reproduction in Lindera melissifolia (Walt.) Blume, an endangered shrub found in floodplain forests of the Mississippi Alluvial Valley (MAV), USA. A water impoundment facility was used to control the duration of soil flooding (0, 45, or 90 days), and shade houses were used to control light availability (high = 72%, intermediate = 33%, or low = 2% of ambient light) received by L. melissifolia established on native soil of the MAV. Sexual reproductive intensity, as measured by inflorescence bud count, fruit set, and drupe production, was greatest in the absence of soil flooding. Ninety days of soil flooding in the year prior to anthesis decreased inflorescence bud counts, and 45 days of soil flooding in the year of anthesis lessened fruit set and drupe production. Inflorescence bud development was the greatest in environments of intermediate light, decreased in high-light environments, and was absent in low light environments. But low fruit set diminished drupe production in intermediate light environments as compared to high light environments. Asexual reproduction, as measured by development of new ramets, was greatest in the absence of soil flooding and where plants were grown in high or intermediate light. Plants exhibited plasticity in reproductive mode such that soil flooding increased the relative importance of asexual reproduction. The high light environment was most favorable to sexual reproduction, and reproductive mode transitioned to exclusively asexual in the low light environment. Our results raise several implications important to active management for the conservation of this imperiled plant.

5.
Biosensors (Basel) ; 10(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640592

RESUMO

This editorial provides an overview and summary of recent research articles published in Biosensors journal, volumes 9 (2019) and 10 (2020), within the Special Issue "Noninvasive Early Disease Diagnosis", which focused on recent sensors, biosensors, and clinical instruments developed for the noninvasive early detection and diagnosis of human, animal, and plant diseases or invasive pests. The six research articles included in this Special Issue provide examples of some of the latest electronic-nose (e-nose) and related volatile organic compound (VOC)-detection technologies, which are being tested and developed to improve the effectiveness and efficiency of innovative diagnostic methodologies for the early detection of particular diseases and pest infestations in living hosts, prior to symptom development.


Assuntos
Diagnóstico Precoce , Nariz Eletrônico , Monitorização Fisiológica/instrumentação , Compostos Orgânicos Voláteis/análise , Humanos
6.
Sensors (Basel) ; 18(8)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096939

RESUMO

Conventional methods utilized for clinical diagnosis of gastrointestinal (GI) diseases have employed invasive medical procedures that cause stress, anxiety and pain to patients. These methods are often expensive, time-consuming, and require sophisticated chemical-analysis instruments and advanced modeling procedures to achieve diagnostic interpretations. This paper reviews recent applications of simpler, electronic-nose (e-nose) devices for the noninvasive early diagnosis of a wide range of GI diseases by collective analysis of headspace volatile organic compound (VOC)-metabolites from clinical samples to produce disease-specific aroma signatures (VOC profiles). A different "metabolomics" approach to GI disease diagnostics, involving identifications and quantifications of disease VOC-metabolites, are compared to the electronic-nose approach based on diagnostic costs, accuracy, advantages and disadvantages. The importance of changes in gut microbiome composition that result from disease are discussed relative to effects on disease detection. A new diagnostic approach, which combines the use of e-nose instruments for early rapid prophylactic disease-screenings with targeted identification of known disease biomarkers, is proposed to yield cheaper, quicker and more dependable diagnostic results. Some priority future research needs and coordination for bringing e-nose instruments into routine clinical practice are summarized.


Assuntos
Diagnóstico Precoce , Nariz Eletrônico , Gastroenteropatias/diagnóstico , Compostos Orgânicos Voláteis/análise , Biomarcadores/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA