Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(21): 14558-14567, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32961052

RESUMO

There are many processes that actively alter the concentrations of solutes in the extracellular space. Enzymatic reactions, either by soluble enzymes or membrane-bound ectoenzymes, and uptake or clearance are two such processes. Investigations of ectoenzymatic reactions in vivo is challenging, particularly in the brain. Studies using microdialysis have revealed some qualitative information about what enzymes may be present, but microdialysis is a sampling technique so it is not designed to control conditions such as a substrate concentration outside the probe. Micropush-pull perfusion has been used to determine which nitric oxide synthase enzymes are active in discrete regions of the rat retina. Ectopeptidases are a particularly important class of ectoenzymes. As far as it is known, the extracellular activity of active peptides in the brain is controlled by ectopeptidases. To understand ectopeptidase activity, we developed a physical probe and an accompanying method. The probe has a two-channel source that supplies substrate or substrate plus inhibitor using electroosmotic perfusion (EOP). It also has a microdialysis probe to collect products and unreacted substrate. The method provides quantitative estimates of substrate-to-product conversion and the influence of inhibitors on this process. The quantitative estimates are made possible by including a d-amino acid-containing peptide analog of the substrate in the substrate-containing solution infused. Quantitative analysis of substrate, substrate analog, and products is carried out by quantitative, online capillary liquid chromatography-tandem mass spectrometry. The electroosmotic perfusion-microdialysis probe and associated method were used to determine the effect of the selective inhibitor HFI-419 on insulin-regulated aminopeptidase (EC 3.4.11.3) in the rat neocortex.


Assuntos
Aminopeptidases/metabolismo , Eletro-Osmose/métodos , Encefalina Leucina/metabolismo , Insulina/metabolismo , Lasers , Microdiálise/métodos , Animais , Hidrólise , Neocórtex/metabolismo , Perfusão , Ratos
2.
J Chromatogr A ; 1589: 73-82, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30626503

RESUMO

Predicting retention and enthalpy allows for the simulation and optimization of advanced chromatographic techniques including gradient separations, temperature-assisted solute focusing, multidimensional liquid chromatography, and solvent focusing. In this paper we explore the fits of three expressions for retention as a function of mobile phase composition and temperature to retention data of 101 small molecules in reversed phase liquid chromatography. The three retention equations investigated are those by Neue and Kuss (NK) and two different equations by Pappa-Louisi et al., one based on a partition model (PL-P) and one based on an adsorption model (PL-A). More than 25 000 retention factors were determined for 101 small molecules under various mobile phase and temperature conditions. The pure experimental uncertainty is very small, approximately 0.22% uncertainty in retention factors measured on the same day (2.1% when performed on different days). Each of the three equations for ln(k) was fit to the experimental data based on a least-squares approach and the results were analyzed using lack-of-fit residuals. The PL-A model, while complex, gives the best overall fits. In addition to examining the equations' adequacy for retention, we also examined their use for apparent retention enthalpy. This enthalpy can be predicted by taking the derivative of these expressions with respect to the inverse of absolute temperature. The numerical values of the fitted parameters based on retention data can then be used to predict retention enthalpy. These enthalpy predictions were compared to those obtained from a modified van 't Hoff equation that included a quadratic term in inverse temperature. Based on analysis of 1 211 van 't Hoff plots (solute-mobile phase-day combinations), ninety-eight percent showed a significantly better fit when using the modified van 't Hoff expression, justifying its use to provide apparent enthalpies as a function of mobile phase composition and temperature. The foregoing apparent enthalpies were compared to the apparent enthalpies predicted by the three models. The PL-A model, which contains a temperature dependent enthalpy, provided the best enthalpy prediction. However, there is virtually no correlation between the overall lack of fit to experimental ln(k) for each model and the corresponding lack of fit of the linear (in 1/T) van 't Hoff expression. Thus, the temperature-dependent enthalpy is apparently not the cause of a model's ability to fit ln(k) as a function of mobile phase composition and temperature. The value in these expressions is their ability to predict chromatograms, allowing for optimization of an advanced chromatographic technique. The two simpler models NK and PL-P, which do not contain a temperature dependent enthalpy, have their merits in modelling retention (NK being the better of the two) and enthalpy (PL-P being the better of the two) if a simpler expression is required for a given application.


Assuntos
Cromatografia de Fase Reversa/métodos , Temperatura , Termodinâmica , Adsorção , Cromatografia Líquida , Modelos Teóricos , Solventes
3.
Annu Rev Anal Chem (Palo Alto Calif) ; 11(1): 509-533, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29505726

RESUMO

Enzymes catalyze a variety of biochemical reactions in the body and, in conjunction with transporters and receptors, control virtually all physiological processes. There is great value in measuring enzyme activity ex vivo and in vivo. Spatial and temporal differences or changes in enzyme activity can be related to a variety of natural and pathological processes. Several analytical approaches have been developed to meet this need. They can be classified broadly as methods either based on artificial substrates, with the goal of creating images of diseased tissue, or based on natural substrates, with the goal of understanding natural processes. This review covers a selection of these methods, including optical, magnetic resonance, mass spectrometry, and physical sampling approaches, with a focus on creative chemistry and method development that make ex vivo and in vivo measurements of enzyme activity possible.


Assuntos
Biocatálise , Ensaios Enzimáticos/métodos , Enzimas/metabolismo , Animais , Ativação Enzimática , Humanos , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Anal Chem ; 90(7): 4561-4568, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29504751

RESUMO

We have developed a method for online collection and quantitation of neuropeptides in rat brain microdialysates using on-column dimethylation with capillary liquid chromatography-tandem mass spectrometry (cLC-MS2). This method addresses a number of the challenges of quantifying neuropeptides with cLC-MS. It is also a completely automated and robust method for the preparation of stable isotope labeled-peptide internal standards to correct for matrix effects and thus ensure accurate quantitation. Originally developed for tissue-derived proteomics samples ( Raijmakers et al. Mol. Cell. Proteomics 2008 , 7 , 1755 - 1762 ), the efficacy of on-column dimethylation for native peptides in microdialysate has not been demonstrated until now. We have modified the process to make it more amenable to the time scale of microdialysis sampling and to reduce the accumulation of nonvolatile contaminants on the column and, thus, loss of sensitivity. By decreasing labeling time, we have a temporal resolution of 1 h from sample loading to elution and our peptide detection limits are in the low pM range for 5 µL injections of microdialysate. We have demonstrated the effectiveness of this method by quantifying basal and potassium stimulated concentrations of the neuropeptides leu-enkephalin and met-enkephalin in the rat hippocampus. To our knowledge, this is the first report of quantitation of these peptides in the hippocampus using MS.


Assuntos
Encéfalo/metabolismo , Microdiálise , Neuropeptídeos/análise , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Metilação , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
5.
Anal Chem ; 88(10): 5112-21, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27033165

RESUMO

Capillary HPLC (cLC) with gradient elution is the separation method of choice for the fields of proteomics and metabolomics. This is due to the complementary nature of cLC flow rates and electrospray or nanospray ionization mass spectrometry (ESI-MS). The small column diameters result in good mass sensitivity. Good concentration sensitivity is also possible by injection of relatively large volumes of solution and relying on solvent-based solute focusing. However, if the injection volume is too large or solutes are poorly retained during injection, volume overload occurs which leads to altered peak shapes, decreased sensitivity, and lower peak capacity. Solutes that elute early even with the use of a solvent gradient are especially vulnerable to this problem. In this paper, we describe a simple, automated instrumental method, temperature-assisted on-column solute focusing (TASF), that is capable of focusing large volume injections of small molecules and peptides under gradient conditions. By injecting a large sample volume while cooling a short segment of the column inlet at subambient temperatures, solutes are concentrated into narrow bands at the head of the column. Rapidly raising the temperature of this segment of the column leads to separations with less peak broadening in comparison to solvent focusing alone. For large volume injections of both mixtures of small molecules and a bovine serum albumin tryptic digest, TASF improved the peak shape and resolution in chromatograms. TASF showed the most dramatic improvements with shallow gradients, which is particularly useful for biological applications. Results demonstrate the ability of TASF with gradient elution to improve the sensitivity, resolution, and peak capacity of volume overloaded samples beyond gradient compression alone. Additionally, we have developed and validated a double extrapolation method for predicting retention factors at extremes of temperature and mobile phase composition. Using this method, the effects of TASF can be predicted, allowing determination of the usefulness of this technique for a particular application.


Assuntos
Cromatografia de Fase Reversa/métodos , Soluções/química , Cetonas/análise , Parabenos/análise , Peptídeos/análise , Sensibilidade e Especificidade , Temperatura
6.
J Chromatogr A ; 1383: 1-7, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25622521

RESUMO

Fulvic acid (FA), the most important water soluble fraction of humic substances in nature, is known to form aggregate pseudophase and complexes with organic and inorganic species. Here, we report a novel equilibrium headspace gas chromatography (eHSGC) and a two-step reaction model to measure n-alkylbenzene-FA association constant (K11) and n-alkylbenzene-pseudophase FAn association constant (Kn1) without solute concentration and response factor. The K11 and Kn1 values were 2-3 orders of magnitude higher than those for sodium dodecylsulfate. Changes in peak area were used to calculate the critical FA-aggregation concentration (cfc), mole fraction based partition coefficients (Kx), activity coefficients of solute inside the aggregate pseudophase (γm(∞)), and transfer free energies of alkyl CH2 at infinite dilution. The cfc was found to be 10±0.5µM. The Kx values are of the order of 10(7) in the FA-aggregate pseudophase. The data shows that benzene has the lowest (0.0002) and n-butylbenzene has the highest (0.01) γm(∞) values, which are seven orders of magnitude smaller than γw(∞) in water. The transfer free energy of association of a CH2 group, -155cal/mol, compared to that of benzene, -9722cal/mol, indicates that the FA-aggregate pseudophase is more polarizable benzene-like and less n-alkane aliphatic-like.


Assuntos
Derivados de Benzeno/análise , Benzopiranos/química , Técnicas de Química Analítica/métodos , Cromatografia Gasosa , Derivados de Benzeno/química , Substâncias Húmicas/análise , Cinética , Modelos Teóricos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...