Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(12): 8507-8518, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34060816

RESUMO

The sequence of transitions between different phases of BiNbO4 has been thoroughly investigated and clarified using thermal analysis, high-resolution neutron diffraction, and Raman spectroscopy. The theoretical optical phonon modes of the α-phase have been calculated. Based on thermoanalytical data supported by density functional theory (DFT) calculations, the ß-phase is proposed to be metastable, while the α- and γ-phases are stable below and above 1040 °C, respectively. Accurate positional parameters for oxygen positions in the three main polymorphs (α, ß, and γ) are presented and the structural relationships between these polymorphs are discussed. Even though no significant changes, only relaxation phenomena, are observed in the dielectric behavior of α-BiNbO4 below 1000 °C, evidence of two further subtle transitions at ∼350 and 600 °C is presented through careful analysis of structural parameters from variable temperature neutron diffraction measurements. Such phase variations are also evident in the phonon modes in Raman spectra and supported by changes in the thermoanalytical data. These subtle transitions may correspond to the previously proposed antiferroelectric to ferroelectric and ferroelectric to paraelectric phase transitions, respectively.

2.
Nanoscale ; 11(45): 21900-21908, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31701975

RESUMO

Four types of magic-size CdS clusters and three different CdS quantum dots have been studied using the technique of X-ray total scattering and pair distribution function analysis. We found that the CdS quantum dots could be modelled as a mixed phase of atomic structures based on the two bulk crystalline phases, which is interpreted as representing the effects of random stacking of layers. However, the results for the magic-size clusters are significantly different. On one hand, the short-range features in the pair distribution function reflect the bulk, indicating that these structures are based on the same tetrahedral coordination found in the bulk phases (and therefore excluding new types of structures such as cage-like arrangements of atoms). But on the other hand, the longer-range atomic structure clearly does not reflect the layer structures found in the bulk and the quantum dots. We compare the effect of two ligands, phenylacetic acid and oleic acid, showing that in one case the ligand has little effect on the atomic structure of the magic-size nanocluster, and in another it has a significant effect.

3.
Dent Mater ; 34(10): 1566-1577, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30072165

RESUMO

OBJECTIVES: To process novel leucite glass-ceramics and test the effects of surface treatment and resin bonding on the biaxial flexural strength (BFS) and shear bond strength (SBS). METHODS: Alumino-silicate glasses were ball-milled, and heat treated to form leucite glass-ceramics (LG-C, OLG-C), then sintered into ingots. Ingots were heat extruded into a refractory mould to form disc specimens (1.3×14mm diameter). IPS e.max® was used as a commercial comparison. Glass-ceramic test groups were sandblasted (Groups. 1, 4, 6), sandblasted, etched and adhesively bonded (Groups. 2, 5, 7) or lapped, etched and adhesively bonded (Groups. 3, 8). Specimens were adhesively bonded with Monobond S, followed by the application of Variolink II® cement and light curing. BFS testing was at 1mm/min and SBS testing at 0.5mm/min. Samples were characterised using XRD, SEM and profilometry. RESULTS: XRD confirmed tetragonal leucite in LG-C/OLG-C and lithium disilicate/lithium orthophosphate in IPS e.max®. Mean BFS (MPa (SD)) were: Gp1 LG-C; 193.1 (13.9), Gp2 LG-C; 217.7 (23.0), Gp3 LG-C; 273.6 (26.7), Gp4 OLG-C; 255.9 (31); Gp5 OLG-C; 288.6 (37.4), Gp6 IPS e.max®; 258.6 (20.7), Gp7 IPS e.max®; 322.3 (23.4) and Gp8 IPS e.max®; 416.4 (52.6). The Median SBS (MPa) were Gp1 LG-C; 14.2, Gp2 LG-C (10s etch); 10.6 and Gp3 IPS e.max®; 10.8. Mean surface roughness was 5-5.1µm (IPS e.max®) and 2.6µm (LG-C). SIGNIFICANCE: Novel leucite glass-ceramics with reduced flaw size and fine microstructures produced enhanced BFS and SBS by resin bonding. These properties may be useful for the fabrication of minimally invasive aesthetic and fracture resistant restorations.


Assuntos
Silicatos de Alumínio/química , Cerâmica/química , Cimentos de Resina/química , Dióxido de Silício/química , Condicionamento Ácido do Dente , Porcelana Dentária , Resistência à Flexão , Teste de Materiais , Propriedades de Superfície , Difração de Raios X
4.
Nat Commun ; 9(1): 2145, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858566

RESUMO

A major goal in materials science is to develop bioinspired functional materials based on the precise control of molecular building blocks across length scales. Here we report a protein-mediated mineralization process that takes advantage of disorder-order interplay using elastin-like recombinamers to program organic-inorganic interactions into hierarchically ordered mineralized structures. The materials comprise elongated apatite nanocrystals that are aligned and organized into microscopic prisms, which grow together into spherulite-like structures hundreds of micrometers in diameter that come together to fill macroscopic areas. The structures can be grown over large uneven surfaces and native tissues as acid-resistant membranes or coatings with tuneable hierarchy, stiffness, and hardness. Our study represents a potential strategy for complex materials design that may open opportunities for hard tissue repair and provide insights into the role of molecular disorder in human physiology and pathology.


Assuntos
Calcificação Fisiológica , Dentina/metabolismo , Elastina/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Minerais/metabolismo , Sequência de Aminoácidos , Esmalte Dentário/química , Dentina/química , Dentina/ultraestrutura , Elastina/química , Elastina/ultraestrutura , Humanos , Hidroxiapatitas/química , Hidroxiapatitas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Minerais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
J Biomed Mater Res B Appl Biomater ; 106(1): 21-30, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29218858

RESUMO

The commercial calcium phosphate cement, HydroSet™, was investigated in vitro, studying phase formation, compressive strength and setting time, followed by an ovine in vivo study to measure osseointegration, bone apposition and bone-to-graft contact. The X-ray diffraction and 31 P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) results showed the initial formation of octacalcium phosphate and hydroxyapatite at one hour. Over 7 days the octacalcium phosphate transformed to apatite, which was the only crystalline phase of the cement at 28 days. This apatite phase is thought to be a calcium deficient apatite. In the scanning electron microscopy, histological images of 12-week ovine in vivo results showed a high degree of osseointegration, 92.5%. Compressive strength comparisons between in vitro and in vivo measurements showed a dramatic difference between the in vitro measurements (highest 25.4 MPa) and in vivo (95 MPa), attributed to bone ingrowth into the cement in vivo. To the best of our knowledge this is the first time phase evolution of HydroSet™ and the properties studied in vitro complement the in vivo evaluation of the cement in a publication. The significance of the new finding of initial formation of octacalcium phosphate in this cement is discussed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 21-30, 2018.


Assuntos
Cimentos Ósseos , Fosfatos de Cálcio , Durapatita , Animais , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Durapatita/química , Durapatita/farmacologia , Ovinos
6.
J Dent ; 68: 51-58, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29097120

RESUMO

OBJECTIVES: The in-vitro dissolution of bioactive glass-based toothpastes and their capacity to form apatite-like phases in buffer solutions have been investigated. MATERIALS AND METHODS: The commercial toothpaste samples were tested on immersion in artificial saliva, Earle's salt solution and Tris buffer for duration from 10min to four days. The powder samples collected at the end of the immersion were studied using solid-state 31P and 19F nuclear magnetic resonance spectroscopy (NMR), X-ray powder diffraction and Fourier transform infrared (FTIR) spectroscopy. The fluoride concentration in the solution remained after the immersion was measured. RESULTS: In artificial saliva and in presence of sodium monofluorophosphate (MFP), the bioactive glass and bioactive glass-based toothpastes formed fluoridated apatite-like phases in under 10min. A small amount of apatite-like phase was detected by 31P NMR in the toothpaste with MFP but no bioactive glass. The toothpaste with bioactive glass but no fluoride formed an apatite-like phase as rapidly as the paste containing bioactive glass and fluoride. By contrast, apatite-like phase formation was much slower in Earle's salt solution than artificial saliva and slower than Tris buffer. CONCLUSIONS: The results of this lab-based study showed that the toothpaste with MFP and bioactive glass formed a fluoridated apatite in artificial saliva and in Tris buffer, as did the mixture of bioactive glass and MFP. CLINICAL SIGNIFICANCE: The presence of fluoride in bioactive glass-containing toothpastes can potentially lead to the formation of a fluoridated apatite, which may result in improved clinical effectiveness and durability. However, this should be further tested intra-orally.


Assuntos
Apatitas/síntese química , Materiais Biocompatíveis/farmacologia , Vidro/química , Teste de Materiais , Cremes Dentais/química , Cremes Dentais/farmacologia , Combinação de Medicamentos , Fluoretos/análise , Fluoretos/farmacologia , Espectroscopia de Ressonância Magnética , Nitratos/farmacologia , Fosfatos/farmacologia , Saliva Artificial , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Trometamina , Difração de Raios X
7.
Int J Appl Glass Sci ; 8(4): 428-437, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29271977

RESUMO

This study aims to demonstrate that excellent bioactivity of glass can be achieved without the presence of an alkali metal component in glass composition. In vitro bioactivity of two sodium-free glasses based on the quaternary system SiO2-P2O5-CaO-CaF2 with 0 and 4.5 mol% CaF2 content was investigated and compared with the sodium containing glasses with equivalent amount of CaF2. The formation of apatite after immersion in Tris buffer was followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 31P and 19F solid state MAS-NMR. The dissolution study was completed by ion release measurements in Tris buffer. The results show that sodium free bioactive glasses formed apatite at 3 hours of immersion in Tris buffer, which is as fast as the corresponding sodium containing composition. This signifies that sodium is not an essential component in bioactive glasses and it is possible to make equally degradable bioactive glasses with or without sodium. The results presented here also emphasize the central role of the glass compositions design which is based on understanding of structural role of components and/or predicting the network connectivity of glasses.

8.
Nanomaterials (Basel) ; 7(7)2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28644384

RESUMO

Three antimicrobial nanoparticle types (AMNP0, AMNP1, and AMNP2) produced using the TesimaTM thermal plasma technology were investigated and their compositions were determined using a combination of analytical methods. Scanning electron micrographs provided the morphology of these particles with observed sizes ranging from 10 to 50 nm, whilst FTIR spectra confirmed the absence of polar bonds and organic impurities, and strong Raman active vibrational bands at ca. 1604 and 1311 cm-1 ascribed to C-C vibrational motions were observed. Carbon signals that resonated at δC 126 ppm in the solid state NMR spectra confirmed that sp² hybridised carbons were present in high concentration in two of the nanoparticle types (AMNP1 and AMNP2). X-ray powder diffraction suggested that AMNP0 contains single phase Tungsten carbide (WC) in a high state of purity and multiple phases of WC/WC1-x were identified in both AMNP1 and AMNP2. Finally, X-ray photoelectron spectral (XPS) analyses revealed and quantified the elemental ratios in these composite formulations.

9.
J Adv Prosthodont ; 8(6): 479-488, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28018566

RESUMO

PURPOSE: The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS: YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A 5 µm (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load - partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X - ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS: A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of 40 µm in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION: The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces.

10.
ACS Appl Mater Interfaces ; 8(20): 12652-60, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27176115

RESUMO

This work demonstrates the synthesis of new chlorhexidine polymorphs with controlled morphology and symmetry, which were used as a template for layer-by-layer (LbL) encapsulation. LbL self-assembly of oppositely charged polyelectrolytes onto the drug surface was used in the current work, as an efficient method to produce a carrier with high drug content, improved drug solubility and sustained release. Coprecipitation of the chlorhexidine polymorphs was performed using chlorhexidine diacetate and calcium chloride solutions. Porous interconnected chlorhexidine spheres were produced by tuning the concentration of calcium chloride. The size of these drug colloids could be further controlled from 5.6 µm to over 20 µm (diameter) by adjusting the coprecipitation temperature. The chlorhexidine content in the spheres was determined to be as high as 90%. These particles were further stabilized by depositing 3.5 bilayers of poly(allylamine hydrochloride) (PAH) and polystyrenesulfonate (PSS) on the surface. In vitro release kinetics of chlorhexidine capsules showed that the multilayer shells could prolong the release, which was further demonstrated by characterizing the remaining chlorhexidine capsules with SEM and confocal microscopy. The new chlorhexidine polymorph and LbL coating has created novel chlorhexidine formulations. Further modification to the chlorhexidine polymorph structure is possible to achieve both sustained and stimuli responsive release, which will enhance its clinical performance in medicine and dentistry.

11.
Dent Mater ; 31(10): e226-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26211698

RESUMO

OBJECTIVES: To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. METHODS: IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. RESULTS: There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (p<0.05). The SPS P3 sample had a reduction in MCS compared with the CS group (p<0.05). XRD of the SPS samples revealed major lithium disilicate/lithium metasilicate phases and minor lithium orthophosphate and cristobalite/quartz phases. Densified IPS e.max Press glass samples resulted in fine fibrils or graduated lithium disilicate crystals. SIGNIFICANCE: The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry.


Assuntos
Cerâmica/química , Materiais Dentários/química , Porcelana Dentária/química , Desenho Assistido por Computador , Cristalização , Análise do Estresse Dentário , Módulo de Elasticidade , Dureza , Temperatura Alta , Teste de Materiais , Propriedades de Superfície
12.
Faraday Discuss ; 173: 67-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25466445

RESUMO

Boundary layer chemical vapour synthesis is a new technique that exploits random fluctuations in the viscous boundary layer between a laminar flow of pyrolysed metallocene vapour and a rough substrate to yield ferromagnetically filled radial-carbon-nanotube structures departing from a core agglomeration of spherical nanocrystals individually encapsulated by graphitic shells. The fluctuations create the thermodynamic conditions for the formation of the central agglomeration in the vapour which subsequently defines the spherically symmetric diffusion gradient that initiates the radial growth. The radial growth is driven by the supply of vapour feedstock by local diffusion gradients created by endothermic graphitic-carbon formation at the vapour-facing tips of the individual nanotubes and is halted by contact with the isothermal substrate. The radial structures are the dominant product and the reaction conditions are self-sustaining. Ferrocene pyrolysis yields three common components in the nanowire encapsulated by multiwall carbon nanotubes, Fe3C, α-Fe, and γ-Fe. Magnetic tuning in this system can be achieved through the magnetocrystalline and shape anisotropies of the encapsulated nanowire. Here we demonstrate proof that alloying of the encapsulated nanowire is an additional approach to tuning of the magnetic properties of these structures by synthesis of radial-carbon-nanotube structures with γ-FeNi encapsulated nanowires.

13.
J Biomed Mater Res A ; 102(3): 647-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23554092

RESUMO

Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies.


Assuntos
Materiais Biocompatíveis/química , Meios de Cultura/química , Fluoretos/química , Vidro/química , Concentração de Íons de Hidrogênio , Solubilidade
14.
Materials (Basel) ; 7(8): 5470-5487, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28788139

RESUMO

The bioactivity of a series of fluoride-containing sodium-free calcium and strontium phosphosilicate glasses has been tested in vitro. Glasses with high fluoride content were partially crystallised to apatite and other fluoride-containing phases. The bioactivity study was carried out in Tris and SBF buffers, and apatite formation was monitored by XRD, FTIR and solid state NMR. Ion release in solutions has been measured using ICP-OES and fluoride-ion selective electrode. The results show that glasses with low amounts of fluoride that were initially amorphous degraded rapidly in Tris buffer and formed apatite as early as 3 h after immersion. The apatite was identified as fluorapatite by 19F MAS-NMR after 6 h of immersion. Glass degradation and apatite formation was significantly slower in SBF solution compared to Tris. On immersion of the partially crystallised glasses, the fraction of apatite increased at 3 h compared to the amount of apatite prior to the treatment. Thus, partial crystallisation of the glasses has not affected bioactivity significantly. Fast dissolution of the amorphous phase was also indicated. There was no difference in kinetics between Tris and SBF studies when the glass was partially crystallised to apatite before immersion. Two different mechanisms of apatite formation for amorphous or partially crystallised glasses are discussed.

15.
Microsc Microanal ; 19(5): 1298-302, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23816334

RESUMO

Structures comprising single-crystal, iron-carbon-based nanowires encapsulated by multiwall carbon nanotubes self-organize on inert substrates exposed to the products of ferrocene pyrolysis at high temperature. The most commonly observed encapsulated phases are Fe3C, α-Fe, and γ-Fe. The observation of anomalously long-period lattice spacings in these nanowires has caused confusion since reflections from lattice spacings of ≥ 0.4 nm are kinematically forbidden for Fe3C, most of the rarely observed, less stable carbides, α-Fe, and g-Fe. Through high-resolution electron microscopy, selective area electron diffraction, and electron energy loss spectroscopy we demonstrate that the observed long-period lattice spacings of 0.49, 0.66, and 0.44 nm correspond to reflections from the (100), (010), and (001) planes of orthorhombic Fe3C (space group Pnma). Observation of these forbidden reflections results from dynamic scattering of the incident beam as first observed in bulk Fe3C crystals.With small amounts of beam tilt these reflections can have significant intensities for crystals containing glide planes such as Fe3C with space groups Pnma or Pbmn.

16.
Dent Mater ; 27(11): 1153-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21930296

RESUMO

OBJECTIVES: Leucite glass-ceramics with fine-grained leucite crystals promote improved mechanical strength and increased translucency. The objectives of the study were to optimize the microstructure of a fine-grained leucite glass-ceramic in order to increase its flexural strength and reliability as measured by its Weibull modulus. METHODS: Glass was prepared by a melt-derived method and ground into a powder (M1A). The glass crystallization kinetics were investigated using high temperature XRD and DSC. A series of two-step heat treatments with different nucleation/crystal growth temperatures and holds were carried out to establish the optimized crystallization heat treatment. Glass-ceramics were characterized using XRD, SEM and dilatometry. The glass-ceramic heat treated at the optimized crystallization parameters (M1A(opt)) was both sintered (SM1A(opt)) and heat extruded (EM1A(opt)) into discs and tested using the biaxial flexural strength (BFS) test. RESULTS: High temperature XRD suggested leucite and sanidine crystallization at different temperatures. Optimized crystallization resulted in an even distribution of fine leucite crystals (0.15 (0.09) µm(2)) in the glassy matrix, with no signs of microcracking. Glass-ceramic M1A(opt) showed BFS values of [mean (SD), MPa]: SM1A(opt)=252.4 (38.7); and EM1A(opt)=245.0 (24.3). Weibull results were: SM1A(opt); m=8.7 (C.I.=7.5-10.1) and EM1A(opt); m=11.9 (C.I.=9.3-15.1). Both experimental groups had a significantly higher BFS and characteristic strength than the IPS Empress Esthetic glass-ceramic, with a higher m value for the EM1A(opt) material (p<0.05). SIGNIFICANCE: A processable fine-grained leucite glass-ceramic with high flexural strength and improved reliability was the outcome of this study.


Assuntos
Silicatos de Alumínio/química , Cerâmica/química , Porcelana Dentária/química , Análise do Estresse Dentário , Varredura Diferencial de Calorimetria , Cerâmica/síntese química , Cristalização , Cristalografia por Raios X , Temperatura Alta , Teste de Materiais , Maleabilidade , Refratometria , Análise de Sobrevida
18.
J Am Chem Soc ; 129(12): 3729-36, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17335283

RESUMO

Two double-hydrophilic block copolymers, each comprising a nonionic block and an anionic block comprising pendent aromatic sulfonate groups, were used as additives to modify the crystallization of CaCO3. Marked morphological changes in the CaCO3 particles were observed depending on the reaction conditions used. A poly(ethylene oxide)-b-poly(sodium 4-styrenesulfonate) diblock copolymer was particularly versatile in effecting a morphological change in calcite particles, and a continuous structural transition in the product particles from polycrystalline to mesocrystal to single crystal was observed with variation in the calcium concentration. The existence of this structural sequence provides unique insight into the mechanism of polymer-mediated crystallization. We propose that it reflects continuity in the crystallization mechanism itself, spanning the limits from nonoriented aggregation of nanoparticles to classical ion-by-ion growth. The various pathways to polycrystalline, mesocrystal, and single-crystal particles, which had previously been considered to be distinct, therefore all form part of a unifying crystallization framework based on the aggregation of precursor subunits.


Assuntos
Carbonato de Cálcio/química , Modelos Químicos , Polímeros/química , Cristalização , Microscopia Eletrônica de Varredura , Estrutura Molecular , Tamanho da Partícula , Difração de Raios X
19.
Biomaterials ; 27(27): 4682-92, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16750850

RESUMO

Seven nominally identical samples of Na-free carbonate apatite (CO(3)Ap) were prepared by reaction of CaHPO(4) with ammonium carbonate solution at 70 degrees C over 3 days. They were studied by chemical analysis, Rietveld analysis of powder X-ray diffraction (XRD) data, Ca/P ratio determinations (quantitative phase analysis of CaO, Ca(OH)(2) and hydroxyapatite formed after heating to 900 degrees C from Rietveld analysis of XRD data), He pycknometry, (1)H, (13)C and (31)P MAS NMR spectrometry and Fourier transform infrared and Raman spectroscopy. Spectroscopy showed the apatite products were B-type CO(3)Aps (CO(3)(2-) replacing PO(4)(3-)) and XRD that one sample contained 1.6 wt% calcite with a trace in another. Mean results of the six essentially calcite-free samples were: a=9.405(5)A, c=6.896(2)A; 11.2 wt% CO(3); unit cell contents, Ca(8.241)(PO(4))(4.344)(CO(3))(1.656)(OH)(0.139) x 2.29H(2)O; mole Ca/P ratio from chemical analyses, 1.897(22) and from powder XRD phase analysis of samples decarbonated at 900 degrees C, 1.892(25). Density determinations indicated that the 2.29mol of H(2)O were in the unit cell. Rietveld refinements were undertaken without and with explicit modelling of the CO(3)(2-) ion. The latter used constraints to maintain the CO(3)(2-) ion in its known geometry and the total of PO(4)(3-) and CO(3)(2-) ions per unit cell at six. Without the CO(3)(2-) ion in the model, PO(4) volume, P-O bond lengths and P occupancy were apparently reduced, consistent with CO(3)(2-) replacing PO(4)(3-) ions. With the CO(3)(2-) ion modelled, the reductions were less and the CO(3)(2-) ion occupied the "sloping" face of the replaced PO(4)(3-) ion in two-fold disorder about the mirror plane. The angle between the normal to the plane of the ion and the c-axis was 34 degrees , close to 35.3 degrees , the equivalent angle for the PO(4)(3-) ion. When modelled, the CO(3)(2-) ion occupancy was 1.81 ions per unit cell, in reasonable agreement with unit cell contents determined chemically (1.66). The OH(-) ion occupancy was elevated (2.33 ions per unit cell versus 0.14 inferred from the charge balance), which we ascribe to H(2)O molecules occupying sites in c-axis channels. The Ca/P ratio from occupancies (2.31) was also elevated over that determined chemically (1.90). We attribute this to loss of Ca from Ca sites increasing the apparent anisotropic displacement parameters of remaining Ca atoms, leading to an apparently increased occupancy.


Assuntos
Apatitas/química , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Cristalização/métodos , Apatitas/análise , Materiais Biocompatíveis/análise , Materiais Biomiméticos/análise , Fosfatos de Cálcio/análise , Fosfatos de Cálcio/química , Hidrólise , Conformação Molecular , Sódio/química , Análise Espectral Raman
20.
Eur J Oral Sci ; 114 Suppl 1: 353-9; discussion 375-6, 382-3, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16674712

RESUMO

The three-dimensional morphology of human tooth fissures and the quantification of mineral distribution in fissure enamel are pertinent to the development and diagnosis of caries. Synchrotron X-ray microtomography was used to measure linear attenuation coefficients (at 25 keV) at high spatial resolution with a volume-imaging element (cubic voxel) of 4.9x4.9x4.9 microm3 in a block from a human premolar that included part of a stained fissure. From the linear attenuation coefficient, the mineral concentration, expressed as gHAp cm-3 (where HAp is stoichiometric hydroxyapatite), was calculated. The mean mineral concentration in bulk enamel was 2.84 gHAp cm-3. Well-defined regions (1.5-2.6 gHAp cm-3), extending up to approximately 130 microm from the base of some narrower lengths of the fissure and up to approximately 50 microm deep from the fissure surface, were attributed to hypomineralization. Other regions of low mineral concentration, some (1.4-2.3 gHAp cm-3) lying within the expected course of the fissure base and some (2.2-2.7 gHAp cm-3) deep to the pit, were also considered to be of developmental origin. However, a diffuse distribution of low mineral concentrations (2.2-2.7 gHAp cm-3) in the pit walls was attributed primarily to demineralization from caries. The fissure contained heterogeneous material (

Assuntos
Esmalte Dentário/diagnóstico por imagem , Fissuras Dentárias/diagnóstico por imagem , Imageamento Tridimensional/métodos , Tomografia por Raios X/métodos , Esmalte Dentário/química , Fissuras Dentárias/metabolismo , Durapatita/análise , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microrradiografia , Minerais/análise , Intensificação de Imagem Radiográfica/métodos , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...