Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Organs ; 48(4): 375-385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37962282

RESUMO

BACKGROUND: Hemocompatibility-related adverse events (HRAE) occur commonly in patients with left ventricular assist devices (LVADs) and add to morbidity and mortality. It is unclear whether the outflow graft orientation can impact flow conditions leading to HRAE. This study presents a simulation-based approach using exact patient anatomy from medical images to investigate the influence of outflow cannula orientation in modulating flow conditions leading to HRAEs. METHODS: A 3D model of a proximal aorta and outflow graft was reconstructed from a computed tomography (CT) scan of an LVAD patient and virtually modified to model multiple cannula orientations (n = 10) by varying polar (cranio-caudal) (n = 5) and off-set (anterior-posterior) (n = 2) angles. Time-dependent computational flow simulations were then performed for each anatomical orientation. Qualitative and quantitative hemodynamics metrics of thrombogenicity including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), endothelial cell platelet activation potential (ECAP), particle residence time (PRT), and platelet activation potential (PLAP) were analyzed. RESULTS: Within the simulations performed, endothelial cell activation potential (ECAP) and particle residence time (PRT) were found to be lowest with a polar angle of 85°, regardless of offset angle. However, polar angles that produced parameters at levels least associated with thrombosis varied when the offset angle was changed from 0° to 12°. For offset angles of 0° and 12° respectively, flow shear was lowest at 65° and 75°, time averaged wall shear stress (TAWSS) was highest at 85° and 35°, and platelet activation potential (PLAP) was lowest at 65° and 45°. CONCLUSION: This study suggests that computational fluid dynamic modeling based on patient-specific anatomy can be a powerful analytical tool when identifying optimal positioning of an LVAD. Contrary to previous work, our findings suggest that there may be an "ideal" outflow cannula for each individual patient based on a CFD-based hemocompatibility profile.


Assuntos
Coração Auxiliar , Trombose , Humanos , Coração Auxiliar/efeitos adversos , Modelos Cardiovasculares , Hidrodinâmica , Aorta/fisiologia , Trombose/etiologia , Hemodinâmica/fisiologia
2.
Front Cardiovasc Med ; 10: 1248300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692033

RESUMO

Heart failure remains a significant cause of mortality in the United States and around the world. While organ transplantation is acknowledged as the gold standard treatment for end stage heart failure, supply is limited, and many patients are treated with left ventricular assist devices (LVADs). LVADs extend and improve patients' lives, but they are not without their own complications, particularly the hemocompatibility related adverse events (HRAE) including stroke, bleeding and pump thrombosis. Mainstream imaging techniques currently in use to assess appropriate device function and troubleshoot complications, such as echocardiography and cardiac computed tomography, provide some insight but do not provide a holistic understanding of pump induced flow alterations that leads to HRAEs. In contrast, there are technologies restricted to the benchtop-such as computational fluid dynamics and mock circulatory loops paired with methods like particle image velocimetry-that can assess flow metrics but have not been optimized for clinical care. In this review, we outline the potential role and current limitations of converging available technologies to produce novel imaging techniques, and the potential utility in evaluating hemodynamic flow to determine whether LVAD patients may be at higher risk of HRAEs. This addition to diagnostic and monitoring capabilities could improve prevention and treatment of LVAD-induced complications in heart failure patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...