Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889230

RESUMO

There is a rich tradition of research on the neuroanatomical correlates of spoken language production in aphasia using constrained tasks (e.g., picture naming), which offer controlled insights into the distinct processes that govern speech and language (i.e., lexical-semantic access, morphosyntactic construction, phonological encoding, speech motor programming/execution). Yet these tasks do not necessarily reflect everyday language use. In contrast, naturalistic language production (also referred to as connected speech or discourse) more closely approximates typical processing demands, requiring the dynamic integration of all aspects of speech and language. The brain bases of naturalistic language production remain relatively unknown, however, in part because of the difficulty in deriving features that are salient, quantifiable, and interpretable relative to both speech-language processes and the extant literature. The present cross-sectional observational study seeks to address these challenges by leveraging a validated and comprehensive auditory-perceptual measurement system that yields four explanatory dimensions of performance-Paraphasia (misselection of words and sounds), Logopenia (paucity of words), Agrammatism (grammatical omissions), and Motor speech (impaired speech motor programming/execution). We used this system to characterize naturalistic language production in a large and representative sample of individuals with acute post-stroke aphasia (n = 118). Scores on each of the four dimensions were correlated with lesion metrics, and multivariate associations among the dimensions and brain regions were then explored. Our findings revealed distinct yet overlapping neuroanatomical correlates throughout the left-hemisphere language network. Paraphasia and Logopenia were associated primarily with posterior regions, spanning both dorsal and ventral streams, which are critical for lexical-semantic access and phonological encoding. In contrast, Agrammatism and Motor speech were associated primarily with anterior regions of the dorsal stream that are involved in morphosyntactic construction and speech motor planning/execution respectively. Collectively, we view these results as constituting a brain-behavior model of naturalistic language production in aphasia, aligning with both historical and contemporary accounts of the neurobiology of spoken language production.

2.
Brain Commun ; 6(1): fcae024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370445

RESUMO

Individuals with post-stroke aphasia tend to recover their language to some extent; however, it remains challenging to reliably predict the nature and extent of recovery that will occur in the long term. The aim of this study was to quantitatively predict language outcomes in the first year of recovery from aphasia across multiple domains of language and at multiple timepoints post-stroke. We recruited 217 patients with aphasia following acute left hemisphere ischaemic or haemorrhagic stroke and evaluated their speech and language function using the Quick Aphasia Battery acutely and then acquired longitudinal follow-up data at up to three timepoints post-stroke: 1 month (n = 102), 3 months (n = 98) and 1 year (n = 74). We used support vector regression to predict language outcomes at each timepoint using acute clinical imaging data, demographic variables and initial aphasia severity as input. We found that ∼60% of the variance in long-term (1 year) aphasia severity could be predicted using these models, with detailed information about lesion location importantly contributing to these predictions. Predictions at the 1- and 3-month timepoints were somewhat less accurate based on lesion location alone, but reached comparable accuracy to predictions at the 1-year timepoint when initial aphasia severity was included in the models. Specific subdomains of language besides overall severity were predicted with varying but often similar degrees of accuracy. Our findings demonstrate the feasibility of using support vector regression models with leave-one-out cross-validation to make personalized predictions about long-term recovery from aphasia and provide a valuable neuroanatomical baseline upon which to build future models incorporating information beyond neuroanatomical and demographic predictors.

3.
Cortex ; 173: 96-119, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38387377

RESUMO

Word deafness is a rare neurological disorder often observed following bilateral damage to superior temporal cortex and canonically defined as an auditory modality-specific deficit in word comprehension. The extent to which word deafness is dissociable from aphasia remains unclear given its heterogeneous presentation, and some have consequently posited that word deafness instead represents a stage in recovery from aphasia, where auditory and linguistic processing are affected to varying degrees and improve at differing rates. Here, we report a case of an individual (Mr. C) with bilateral temporal lobe lesions whose presentation evolved from a severe aphasia to an atypical form of word deafness, where auditory linguistic processing was impaired at the sentence level and beyond. We first reconstructed in detail Mr. C's stroke recovery through medical record review and supplemental interviewing. Then, using behavioral testing and multimodal neuroimaging, we documented a predominant auditory linguistic deficit in sentence and narrative comprehension-with markedly reduced behavioral performance and absent brain activation in the language network in the spoken modality exclusively. In contrast, Mr. C displayed near-unimpaired behavioral performance and robust brain activations in the language network for the linguistic processing of words, irrespective of modality. We argue that these findings not only support the view of word deafness as a stage in aphasia recovery but also further instantiate the important role of left superior temporal cortex in auditory linguistic processing.


Assuntos
Afasia , Surdez , Transtornos do Desenvolvimento da Linguagem , Acidente Vascular Cerebral , Humanos , Testes Neuropsicológicos , Afasia/etiologia , Acidente Vascular Cerebral/complicações , Lobo Temporal/patologia , Percepção Auditiva
4.
Cortex ; 173: 34-48, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38359511

RESUMO

Morphosyntactic assessments are important for characterizing individuals with nonfluent/agrammatic variant primary progressive aphasia (nfvPPA). Yet, standard tests are subject to examiner bias and often fail to differentiate between nfvPPA and logopenic variant PPA (lvPPA). Moreover, relevant neural signatures remain underexplored. Here, we leverage natural language processing tools to automatically capture morphosyntactic disturbances and their neuroanatomical correlates in 35 individuals with nfvPPA relative to 10 healthy controls (HC) and 26 individuals with lvPPA. Participants described a picture, and ensuing transcripts were analyzed via part-of-speech tagging to extract sentence-related features (e.g., subordinating and coordinating conjunctions), verbal-related features (e.g., tense markers), and nominal-related features (e.g., subjective and possessive pronouns). Gradient boosting machines were used to classify between groups using all features. We identified the most discriminant morphosyntactic marker via a feature importance algorithm and examined its neural correlates via voxel-based morphometry. Individuals with nfvPPA produced fewer morphosyntactic elements than the other two groups. Such features robustly discriminated them from both individuals with lvPPA and HCs with an AUC of .95 and .82, respectively. The most discriminatory feature corresponded to subordinating conjunctions was correlated with cortical atrophy within the left posterior inferior frontal gyrus across groups (pFWE < .05). Automated morphosyntactic analysis can efficiently differentiate nfvPPA from lvPPA. Also, the most sensitive morphosyntactic markers correlate with a core atrophy region of nfvPPA. Our approach, thus, can contribute to a key challenge in PPA diagnosis.


Assuntos
Afasia Primária Progressiva , Humanos , Afasia Primária Progressiva/diagnóstico por imagem , Fala , Imageamento por Ressonância Magnética , Idioma , Atrofia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA