Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadk1954, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598627

RESUMO

The globally distributed marine alga Emiliania huxleyi has cooling effect on the Earth's climate. The population density of E. huxleyi is restricted by Nucleocytoviricota viruses, including E. huxleyi virus 201 (EhV-201). Despite the impact of E. huxleyi viruses on the climate, there is limited information about their structure and replication. Here, we show that the dsDNA genome inside the EhV-201 virion is protected by an inner membrane, capsid, and outer membrane. EhV-201 virions infect E. huxleyi by using fivefold vertices to bind to and fuse the virus' inner membrane with the cell plasma membrane. Progeny virions assemble in the cytoplasm at the surface of endoplasmic reticulum-derived membrane segments. Genome packaging initiates synchronously with the capsid assembly and completes through an aperture in the forming capsid. The genome-filled capsids acquire an outer membrane by budding into intracellular vesicles. EhV-201 infection induces a loss of surface protective layers from E. huxleyi cells, which enables the continuous release of virions by exocytosis.


Assuntos
Haptófitas , Phycodnaviridae , Vírus , Haptófitas/metabolismo , Phycodnaviridae/genética , Vírion , Clima
2.
New Phytol ; 241(3): 1292-1307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037269

RESUMO

Diatoms are globally abundant microalgae that form extensive blooms in aquatic ecosystems. Certain bacteria behave antagonistically towards diatoms, killing or inhibiting their growth. Despite their crucial implications to diatom blooms and population health, knowledge of diatom antagonists in the environment is fundamentally lacking. We report systematic characterisation of the diversity and seasonal dynamics of bacterial antagonists of diatoms via plaque assay sampling in the Western English Channel (WEC), where diatoms frequently bloom. Unexpectedly, peaks in detection did not occur during characteristic spring diatom blooms, but coincided with a winter bloom of Coscinodiscus, suggesting that these bacteria likely influence distinct diatom host populations. We isolated multiple bacterial antagonists, spanning 4 classes and 10 bacterial orders. Notably, a diatom attaching Roseobacter Ponticoccus alexandrii was isolated multiple times, indicative of a persistent environmental presence. Moreover, many isolates had no prior reports of antagonistic activity towards diatoms. We verified diatom growth inhibitory effects of eight isolates. In all cases tested, these effects were activated by pre-exposure to diatom organic matter. Discovery of widespread 'cryptic' antagonistic activity indicates that bacterial pathogenicity towards diatoms is more prevalent than previously recognised. Finally, examination of the global biogeography of WEC antagonists revealed co-occurrence patterns with diatom host populations in marine waters globally.


Assuntos
Diatomáceas , Microalgas , Ecossistema , Estações do Ano , Bactérias
3.
New Phytol ; 234(3): 990-1002, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35179778

RESUMO

Rapid virus proliferation can exert a powerful control on phytoplankton host populations, playing a significant role in marine biogeochemistry and ecology. We explore how marine lytic viruses impact phytoplankton succession, affecting host and nonhost populations. Using an in silico food web we conducted simulation experiments under a range of different abiotic and biotic conditions, exploring virus-host-grazer interactions and manipulating competition, allometry, motility and cyst cycles. Virus-host and predator-prey interactions, and interactions with competitors, generate bloom dynamics with a pronounced 'boom-and-busted' dynamic (BBeD) which leads to the suppression of otherwise potentially successful phytoplankton species. The BBeD is less pronounced at low nutrient loading through distancing of phytoplankton hosts, while high sediment loading and high nonhost biomass decrease the abundance of viruses through adsorption. Larger hosts are inherently more distanced, but motility increases virus attack, while cyst cycles promote spatial and temporal distancing. Virus control of phytoplankton bloom development appears more important than virus-induced termination of those blooms. This affects plankton succession - not only the growth of species infected by the virus, but also those that compete for the same resources and are collectively subjected to common grazer control. The role of viruses in structuring plankton communities via BBeDs can thus provide an explanation for the paradox of the plankton.


Assuntos
Fitoplâncton , Vírus , Ecologia , Ecossistema , Cadeia Alimentar , Plâncton
4.
ISME Commun ; 1(1): 20, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37938225

RESUMO

The significance of large tropical lakes as environmental reservoirs of Vibrio cholerae in cholera endemic countries has yet to be established. By combining large scale plankton sampling, microbial culture and ultrasensitive molecular methods, namely Droplet Digital PCR (ddPCR) and targeted genomics, the presence of Vibrio cholerae was investigated in a 96,600 L volume of surface water collected on a 322 nautical mile (596 km) transect in Lake Tanganyika. V. cholerae was detected and identified in a large area of the lake. In contrast, toxigenic strains of V. cholerae O1 or O139 were not detected in plankton samples possibly in relation to environmental conditions of the lake ecosystem, namely very low salinity compared to marine brackish and coastal environments. This represents to our knowledge, the largest environmental study to determine the role of tropical lakes as a reservoir of V. cholerae.

5.
ISME Commun ; 1(1): 58, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37938293

RESUMO

Megaphages, bacteriophages harbouring extremely large genomes, have recently been found to be ubiquitous, being described from a variety of microbiomes ranging from the animal gut to soil and freshwater systems. However, no complete marine megaphage has been identified to date. Here, using both short and long read sequencing, we assembled >900 high-quality draft viral genomes from water in the English Channel. One of these genomes included a novel megaphage, Mar_Mega_1 at >650 Kb, making it one of the largest phage genomes assembled to date. Utilising phylogenetic and network approaches, we found this phage represents a new family of megaphages. Genomic analysis showed Mar_Mega_1 shares relatively few homologues with its closest relatives, but, as with other megaphages Mar_Mega_1 contained a variety of auxiliary metabolic genes responsible for carbon metabolism and nucleotide biosynthesis, including a NADP-dependent isocitrate dehydrogenase [Idh] and nicotinamide-nucleotide amidohydrolase [PncC], which have not previously been identified in megaphages. Mar_Mega_1 was abundant in a marine virome sample and related phages are widely prevalent in the oceans.

6.
Environ Microbiol Rep ; 10(4): 458-464, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30022610

RESUMO

Antibiotic resistance is a rising threat for human health. Although in clinical settings and terrestrial environments the rise of antibiotic resistant bacteria is well documented, their dissemination and spread in the marine environment, covering almost two-thirds of the Earth's surface, is still poorly understood. In this study, the presence and abundance of sulphonamide resistance gene (sul2) and class 1 integron-integrase gene (intI1), used as markers for the occurrence and spread of antibiotic resistance genes since the beginning of the antibiotic era, were investigated. Twenty-nine archived formalin-fixed samples, collected by the Continuous Plankton Recorder (CPR) survey in the Atlantic Ocean and North Sea from 1970 to 2011, were analysed using Droplet Digital PCR (ddPCR) applied for the first time on CPR samples. The two marker genes were present in a large fraction of the samples (48% for sul2 and 76% for intI1). In contrast, results from Real-Time PCR performed on the same samples greatly underestimate their occurrence (21% for sul2 and 52% for intI1). Overall, besides providing successful use of ddPCR for the molecular analysis of CPR samples, this study reveals long-term occurrence and spread of sul2 gene and class 1 integrons in the plankton-associated bacterial communities in the ocean.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Farmacorresistência Bacteriana/genética , Integrases/genética , Plâncton/genética , Reação em Cadeia da Polimerase , Água do Mar/microbiologia , Oceano Atlântico , DNA Bacteriano/genética , Mar do Norte , Tempo
7.
Biochem J ; 475(7): 1271-1293, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29519959

RESUMO

Autosomal-dominant, missense mutations in the leucine-rich repeat protein kinase 2 (LRRK2) gene are the most common genetic predisposition to develop Parkinson's disease (PD). LRRK2 kinase activity is increased in several pathogenic mutations (N1437H, R1441C/G/H, Y1699C, G2019S), implicating hyperphosphorylation of a substrate in the pathogenesis of the disease. Identification of the downstream targets of LRRK2 is a crucial endeavor in the field to understand LRRK2 pathway dysfunction in the disease. We have identified the signaling adapter protein p62/SQSTM1 as a novel endogenous interacting partner and a substrate of LRRK2. Using mass spectrometry and phospho-specific antibodies, we found that LRRK2 phosphorylates p62 on Thr138 in vitro and in cells. We found that the pathogenic LRRK2 PD-associated mutations (N1437H, R1441C/G/H, Y1699C, G2019S) increase phosphorylation of p62 similar to previously reported substrate Rab proteins. Notably, we found that the pathogenic I2020T mutation and the risk factor mutation G2385R displayed decreased phosphorylation of p62. p62 phosphorylation by LRRK2 is blocked by treatment with selective LRRK2 inhibitors in cells. We also found that the amino-terminus of LRRK2 is crucial for optimal phosphorylation of Rab7L1 and p62 in cells. LRRK2 phosphorylation of Thr138 is dependent on a p62 functional ubiquitin-binding domain at its carboxy-terminus. Co-expression of p62 with LRRK2 G2019S increases the neurotoxicity of this mutation in a manner dependent on Thr138. p62 is an additional novel substrate of LRRK2 that regulates its toxic biology, reveals novel signaling nodes and can be used as a pharmacodynamic marker for LRRK2 kinase activity.


Assuntos
Embrião de Mamíferos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neurônios/patologia , Proteína Sequestossoma-1/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteína Sequestossoma-1/genética
8.
Nat Microbiol ; 2(11): 1571, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28974689

RESUMO

The original publication of this Article included analysis of virus and microbial cell abundances and virus-to-microbial cell ratios. Data in the Article came from 25 studies intended to be exclusively from marine sites. However, 3 of the studies included in the original unified dataset were erroneously classified as marine sites during compilation. The records with mis-recorded longitude and latitude values were, in fact, taken from inland, freshwater sources. The three inland, freshwater datasets are ELA, TROUT and SWAT. The data from these three studies represent 163 of the 5,671 records in the original publication. In the updated version of the Article, all analyses have been recalculated using the same statistical analysis pipeline released via GitHub as part of the original publication. Removal of the three studies reduces the unified dataset to 5,508 records. Analyses involving all grouped datasets have been updated with changes noted in each figure. All key results remain qualitatively unchanged. All data and scripts used in this correction have been made available as a new, updated GitHub release to reflect the updated dataset and figures.

9.
Environ Microbiol ; 19(10): 3909-3919, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28464391

RESUMO

Coral reefs are in decline worldwide. Much of this decline is attributable to mass coral bleaching events and disease outbreaks, both of which are linked to anthropogenic climate change. Despite increased research effort, much remains unknown about these phenomena, especially the causative agents of many coral diseases. In particular, coral-associated viruses have received little attention, and their potential roles in coral diseases are largely unknown. Previous microscopy studies have produced evidence of viral infections in Symbiodinium, the endosymbiotic algae critical for coral survival, and more recently molecular evidence of Symbiodinium-infecting viruses has emerged from metagenomic studies of corals. Here, we took an exploratory whole-transcriptome approach to virus gene discovery in three different Symbiodinium cultures. An array of virus-like genes was found in each of the transcriptomes, with the majority apparently belonging to the nucleocytoplasmic large DNA viruses. Upregulation of virus-like gene expression following stress experiments indicated that Symbiodinium cells may host latent or persistent viral infections that are induced via stress. This was supported by analysis of host gene expression, which showed changes consistent with viral infection after exposure to stress. If these results can be replicated in Symbiodinium cells in hospite, they could help to explain the breakdown of the coral-Symbiodinium symbiosis, and possibly some of the numerous coral diseases that have yet to be assigned a causative agent.


Assuntos
Vírus de DNA/genética , Dinoflagellida/genética , Dinoflagellida/virologia , Transcriptoma/genética , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Simbiose/genética
10.
ISME J ; 11(8): 1736-1745, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28498373

RESUMO

Viruses are major pathogens in all biological systems. Virus propagation and downstream analysis remains a challenge, particularly in the ocean where the majority of their microbial hosts remain recalcitrant to current culturing techniques. We used a cultivation-independent approach to isolate and sequence individual viruses. The protocol uses high-speed fluorescence-activated virus sorting flow cytometry, multiple displacement amplification (MDA), and downstream genomic sequencing. We focused on 'giant viruses' that are readily distinguishable by flow cytometry. From a single-milliliter sample of seawater collected from off the dock at Boothbay Harbor, ME, USA, we sorted almost 700 single virus particles, and subsequently focused on a detailed genome analysis of 12. A wide diversity of viruses was identified that included Iridoviridae, extended Mimiviridae and even a taxonomically novel (unresolved) giant virus. We discovered a viral metacaspase homolog in one of our sorted virus particles and discussed its implications in rewiring host metabolism to enhance infection. In addition, we demonstrated that viral metacaspases are widespread in the ocean. We also discovered a virus that contains both a reverse transcriptase and a transposase; although highly speculative, we suggest such a genetic complement would potentially allow this virus to exploit a latency propagation mechanism. Application of single virus genomics provides a powerful opportunity to circumvent cultivation of viruses, moving directly to genomic investigation of naturally occurring viruses, with the assurance that the sequence data is virus-specific, non-chimeric and contains no cellular contamination.


Assuntos
Genoma Viral , Genômica , Vírus Gigantes/genética , Mimiviridae/genética , Sequência de Bases , Regulação Viral da Expressão Gênica , Água do Mar/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Viruses ; 9(3)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294997

RESUMO

Viruses play a crucial role in the marine environment, promoting nutrient recycling and biogeochemical cycling and driving evolutionary processes. Tiny marine phytoplankton called prasinophytes are ubiquitous and significant contributors to global primary production and biomass. A number of viruses (known as prasinoviruses) that infect these important primary producers have been isolated and characterised over the past decade. Here we review the current body of knowledge about prasinoviruses and their interactions with their algal hosts. Several genes, including those encoding for glycosyltransferases, methyltransferases and amino acid synthesis enzymes, which have never been identified in viruses of eukaryotes previously, have been detected in prasinovirus genomes. The host organisms are also intriguing; most recently, an immunity chromosome used by a prasinophyte in response to viral infection was discovered. In light of such recent, novel discoveries, we discuss why the cellular simplicity of prasinophytes makes for appealing model host organism-virus systems to facilitate focused and detailed investigations into the dynamics of marine viruses and their intimate associations with host species. We encourage the adoption of the prasinophyte Ostreococcus and its associated viruses as a model host-virus system for examination of cellular and molecular processes in the marine environment.


Assuntos
Organismos Aquáticos/virologia , Clorófitas/virologia , Interações Hospedeiro-Parasita , Phycodnaviridae/fisiologia , Fitoplâncton/virologia , Evolução Biológica , Phycodnaviridae/genética
12.
Environ Microbiol ; 19(2): 740-755, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27902869

RESUMO

An 8-year time-series in the Western Antarctic Peninsula (WAP) with an approximately weekly sampling frequency was used to elucidate changes in virioplankton abundance and their drivers in this climatically sensitive region. Virioplankton abundances at the coastal WAP show a pronounced seasonal cycle with interannual variability in the timing and magnitude of the summer maxima. Bacterioplankton abundance is the most influential driving factor of the virioplankton, and exhibit closely coupled dynamics. Sea ice cover and duration predetermine levels of phytoplankton stock and thus, influence virioplankton by dictating the substrates available to the bacterioplankton. However, variations in the composition of the phytoplankton community and particularly the prominence of Diatoms inferred from silicate drawdown, drive interannual differences in the magnitude of the virioplankton bloom; likely again mediated through changes in the bacterioplankton. Their findings suggest that future warming within the WAP will cause changes in sea ice that will influence viruses and their microbial hosts through changes in the timing, magnitude and composition of the phytoplankton bloom. Thus, the flow of matter and energy through the viral shunt may be decreased with consequences for the Antarctic food web and element cycling.


Assuntos
Ecossistema , Vírus/isolamento & purificação , Regiões Antárticas , Organismos Aquáticos , Mudança Climática , Cadeia Alimentar , Camada de Gelo/virologia , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Estações do Ano , Vírus/classificação , Vírus/genética
13.
Biopreserv Biobank ; 15(1): 65-71, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27869475

RESUMO

As guest editors of this sustainability issue of Biopreservation and Biobanking focused on business planning, utilization, and marketing, we invited a number of experts from different sectors of the biobanking arena to provide their views on business planning issues. Each expert was asked to provide a brief background statement on their biobanks, to build a context to understand their answers to the sustainability questions. We hope that these insights and experiences can provide valuable considerations and ideas for other biobanks who wish to develop or refine their own business plans, measure their utilization rates, and work toward financial sustainability. In addition, after the expert input was gathered, the guest editors invited an additional expert to provide summary comments and observations on cost and operational optimization strategies. The broad experiences from all of the experts included and scope of the biobanks they represent should provide a level of relevant representation for all interested parties.


Assuntos
Bancos de Espécimes Biológicos/economia , Comércio , Custos e Análise de Custo , Humanos , Marketing , Técnicas de Planejamento
14.
Nat Microbiol ; 1: 15024, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-27572161

RESUMO

Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Densidade Demográfica , Água do Mar/microbiologia , Água do Mar/virologia , Vírus/crescimento & desenvolvimento , Oceanos e Mares , Análise Espaço-Temporal
15.
Front Psychol ; 7: 1139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524975

RESUMO

Why does the capacity to think certain thoughts imply the capacity to think certain other, structurally related, thoughts? Despite decades of intensive debate, cognitive scientists have yet to reach a consensus on an explanation for this property of cognitive architecture-the basic processes and modes of composition that together afford cognitive capacity-called systematicity. Systematicity is generally considered to involve a capacity to represent/process common structural relations among the equivalently cognizable entities. However, the predominant theoretical approaches to the systematicity problem, i.e., classical (symbolic) and connectionist (subsymbolic), require arbitrary (ad hoc) assumptions to derive systematicity. That is, their core principles and assumptions do not provide the necessary and sufficient conditions from which systematicity follows, as required of a causal theory. Hence, these approaches fail to fully explain why systematicity is a (near) universal property of human cognition, albeit in restricted contexts. We review an alternative, category theory approach to the systematicity problem. As a mathematical theory of structure, category theory provides necessary and sufficient conditions for systematicity in the form of universal construction: each systematically related cognitive capacity is composed of a common component and a unique component. Moreover, every universal construction can be viewed as the optimal construction in the given context (category). From this view, universal constructions are derived from learning, as an optimization. The ultimate challenge, then, is to explain the determination of context. If context is a category, then a natural extension toward addressing this question is higher-order category theory, where categories themselves are the objects of construction.

16.
PLoS One ; 11(8): e0160619, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27505411

RESUMO

Systematicity is a property of cognitive architecture whereby having certain cognitive capacities implies having certain other "structurally related" cognitive capacities. The predominant classical explanation for systematicity appeals to a notion of common syntactic/symbolic structure among the systematically related capacities. Although learning is a (second-order) cognitive capacity of central interest to cognitive science, a systematic ability to learn certain cognitive capacities, i.e., second-order systematicity, has been given almost no attention in the literature. In this paper, we introduce learned associations as an instance of second-order systematicity that poses a paradox for classical theory, because this form of systematicity involves the kinds of associative constructions that were explicitly rejected by the classical explanation. Our category theoretic explanation of systematicity resolves this problem, because both first and second-order forms of systematicity are derived from the same categorical construction: universal morphisms, which generalize the notion of compositionality of constituent representations to (categorical) compositionality of constituent processes. We derive a model of systematic associative learning based on (co)recursion, which is an instance of a universal construction. These results provide further support for a category theory foundation for cognitive architecture.


Assuntos
Cognição/fisiologia , Teoria Psicológica , Humanos , Aprendizagem/fisiologia
18.
ISME J ; 9(6): 1352-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25635642

RESUMO

Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.


Assuntos
Biomassa , Ecossistema , Cadeia Alimentar , Vírus , Animais , Bactérias/virologia , Carbono , Cianobactérias/metabolismo , Interações Microbianas , Oceanos e Mares , Microbiologia da Água , Zooplâncton/metabolismo
19.
J Environ Radioact ; 140: 123-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461524

RESUMO

Radioargon isotopes, particularly (37)Ar, are currently being considered for use as an On-Site Inspection (OSI) relevant radionuclide within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In order to understand any soil air measurements taken during an OSI, the radioargon background due to cosmic ray induced activation along with other sources must be understood. An MCNP6 model was developed using the cosmic ray source feature within the code to examine the neutron flux at ground level as a function of various conditions: date during the solar magnetic activity cycle, latitude of sampling location, geology of the sampling location, and sampling depth. Once the cosmic neutron flux was obtained, calculations were performed to determine the rate of radioargon production for the main interactions. Radioargon production was shown to be highly dependent on the soil composition, and a range of (37)Ar production values at 1 m depth was found with a maximum production rate of 4.012 atoms/sec/m(3) in carbonate geologies and a minimum production rate of 0.070 atoms/sec/m(3) in low calcium granite. The sampling location latitude was also shown to have a measurable effect on the radioargon production rate, where the production of (37)Ar in an average continental crust is shown to vary by a factor of two between the equator and the poles. The sampling date's position within the solar magnetic activity cycle was also shown to cause a smaller change, less than a factor of 1.2, in activation between solar maxima and solar minima.


Assuntos
Radiação Cósmica , Nêutrons , Radioisótopos/análise
20.
Virology ; 466-467: 123-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063474

RESUMO

Megaviruses are generically defined as giant viruses with genomes up to 1.26Mb that infect eukaryotic unicellular protists; they are clearly delineated in DNA polymerase B phylogenetic trees; in addition, common features often include an associated virophage observed during infection; the presence of an amino acyl tRNA synthetase gene; and a nucleic acid mismatch repair protein, MutS gene. The archetypal representative of this evolving putative family is Mimivirus, an opportunistic pathogen of Acanthamoeba spp. originally thought to be a bacterium until its genome sequence was published in 2004. Subsequent analysis of marine metagenomic data revealed Megaviruses are likely ubiquitous on the surface ocean. Analysis of genome sequences of giant viruses isolated from naturally occurring marine protists such as microalgae and a microflagellate grazer, started the expansion of the Megaviridae. Here, we explored the possibility of developing Megavirus specific markers for mutS that could be used in virus molecular ecology studies. MutS is split into 15 different clades representing a wide range of cellular life, and two that contain Megaviruses, clade MutS7 and clade MutS8. We developed specific PCR primers that recognized Megavirus clade MutS8, a clade that we propose discriminates most of the algal Megaviruses. Analysis of seawater off the coast of Maine, US, revealed novel groups of algal Megaviruses that were present in all samples tested. The Megavirus clade MutS8 marker should be considered as a tool to reveal new diversity and distribution of this enigmatic group of viruses.


Assuntos
Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Phycodnaviridae/isolamento & purificação , Estramenópilas/virologia , Sequência de Bases , Primers do DNA/genética , DNA Viral/química , DNA Viral/genética , Marcadores Genéticos/genética , Geografia , Maine , Dados de Sequência Molecular , Phycodnaviridae/classificação , Phycodnaviridae/genética , Filogenia , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Água do Mar/virologia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...