Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 14(12): 1288-99, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21985428

RESUMO

Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management.


Assuntos
Ecologia/métodos , Pesqueiros , Peixes , Modelos Biológicos , Comportamento Predatório , Animais , Ecossistema , Oceanos e Mares
2.
Proc Biol Sci ; 273(1603): 2845-51, 2006 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17015358

RESUMO

An example of alternative male strategies is seen in diandric protogynous (female first) hermaphrodites, where individuals either mature directly as male (primary males) or first reproduce as female and then change sex to male (secondary males). In some sex-changing fishes, the testes of primary males appear anatomically similar to those of non-sex-changing species, whereas the testes of secondary males have anatomical evidence of their former ovarian function. Here, we provide evidence that in the bluehead wrasse, Thalassoma bifasciatum, these strikingly different male phenotypes arise from differences in the ontogenetic timing of environmental sex determination, timing that can be experimentally altered through changes in the social circumstances. Juveniles differentiated almost exclusively as females when reared in isolation, regardless of whether they were collected from a reef with a high proportion of primary males or from a reef with a low proportion of primary males. In contrast, one individual usually differentiated as a primary male when reared in groups of three. Our results indicate that primary males of the bluehead wrasse are an environmentally sensitive developmental strategy that has probably evolved in response to variation in the reproductive success of primary males in populations of different sizes.


Assuntos
Perciformes/fisiologia , Diferenciação Sexual , Comportamento Social , Animais , Meio Ambiente , Masculino , Perciformes/anatomia & histologia , Fenótipo , Densidade Demográfica , Dinâmica Populacional , Razão de Masculinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...