Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4048, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744821

RESUMO

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Assuntos
Bactérias , Ciclo do Carbono , Glucanos , Glucanos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Fitoplâncton/metabolismo , Biomassa , Diatomáceas/metabolismo , Eutrofização , Carbono/metabolismo , Zooplâncton/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/química , Proteínas de Bactérias/metabolismo
2.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490736

RESUMO

Phytoplankton blooms fuel marine food webs with labile dissolved carbon and also lead to the formation of particulate organic matter composed of living and dead algal cells. These particles contribute to carbon sequestration and are sites of intense algal-bacterial interactions, providing diverse niches for microbes to thrive. We analyzed 16S and 18S ribosomal RNA gene amplicon sequences obtained from 51 time points and metaproteomes from 3 time points during a spring phytoplankton bloom in a shallow location (6-10 m depth) in the North Sea. Particulate fractions larger than 10 µm diameter were collected at near daily intervals between early March and late May in 2018. Network analysis identified two major modules representing bacteria co-occurring with diatoms and with dinoflagellates, respectively. The diatom network module included known sulfate-reducing Desulfobacterota as well as potentially sulfur-oxidizing Ectothiorhodospiraceae. Metaproteome analyses confirmed presence of key enzymes involved in dissimilatory sulfate reduction, a process known to occur in sinking particles at greater depths and in sediments. Our results indicate the presence of sufficiently anoxic niches in the particle fraction of an active phytoplankton bloom to sustain sulfate reduction, and an important role of benthic-pelagic coupling for microbiomes in shallow environments. Our findings may have implications for the understanding of algal-bacterial interactions and carbon export during blooms in shallow-water coastal areas.


Assuntos
Desulfovibrio , Diatomáceas , Microbiota , Diatomáceas/genética , Fitoplâncton , Bactérias/genética , Carbono
3.
Microbiome ; 12(1): 32, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374154

RESUMO

BACKGROUND: Marine microalgae (phytoplankton) mediate almost half of the worldwide photosynthetic carbon dioxide fixation and therefore play a pivotal role in global carbon cycling, most prominently during massive phytoplankton blooms. Phytoplankton biomass consists of considerable proportions of polysaccharides, substantial parts of which are rapidly remineralized by heterotrophic bacteria. We analyzed the diversity, activity, and functional potential of such polysaccharide-degrading bacteria in different size fractions during a diverse spring phytoplankton bloom at Helgoland Roads (southern North Sea) at high temporal resolution using microscopic, physicochemical, biodiversity, metagenome, and metaproteome analyses. RESULTS: Prominent active 0.2-3 µm free-living clades comprised Aurantivirga, "Formosa", Cd. Prosiliicoccus, NS4, NS5, Amylibacter, Planktomarina, SAR11 Ia, SAR92, and SAR86, whereas BD1-7, Stappiaceae, Nitrincolaceae, Methylophagaceae, Sulfitobacter, NS9, Polaribacter, Lentimonas, CL500-3, Algibacter, and Glaciecola dominated 3-10 µm and > 10 µm particles. Particle-attached bacteria were more diverse and exhibited more dynamic adaptive shifts over time in terms of taxonomic composition and repertoires of encoded polysaccharide-targeting enzymes. In total, 305 species-level metagenome-assembled genomes were obtained, including 152 particle-attached bacteria, 100 of which were novel for the sampling site with 76 representing new species. Compared to free-living bacteria, they featured on average larger metagenome-assembled genomes with higher proportions of polysaccharide utilization loci. The latter were predicted to target a broader spectrum of polysaccharide substrates, ranging from readily soluble, simple structured storage polysaccharides (e.g., laminarin, α-glucans) to less soluble, complex structural, or secreted polysaccharides (e.g., xylans, cellulose, pectins). In particular, the potential to target poorly soluble or complex polysaccharides was more widespread among abundant and active particle-attached bacteria. CONCLUSIONS: Particle-attached bacteria represented only 1% of all bloom-associated bacteria, yet our data suggest that many abundant active clades played a pivotal gatekeeping role in the solubilization and subsequent degradation of numerous important classes of algal glycans. The high diversity of polysaccharide niches among the most active particle-attached clades therefore is a determining factor for the proportion of algal polysaccharides that can be rapidly remineralized during generally short-lived phytoplankton bloom events. Video Abstract.


Assuntos
Flavobacteriaceae , Microalgas , Fitoplâncton/genética , Fitoplâncton/metabolismo , Eutrofização , Polissacarídeos/metabolismo , Flavobacteriaceae/metabolismo , Microalgas/metabolismo
5.
mSystems ; 8(3): e0128722, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37195198

RESUMO

Net growth of microbial populations, that is, changes in abundances over time, can be studied using 16S rRNA fluorescence in situ hybridization (FISH). However, this approach does not differentiate between mortality and cell division rates. We used FISH-based image cytometry in combination with dilution culture experiments to study net growth, cell division, and mortality rates of four bacterial taxa over two distinct phytoplankton blooms: the oligotrophs SAR11 and SAR86, and the copiotrophic phylum Bacteroidetes, and its genus Aurantivirga. Cell volumes, ribosome content, and frequency of dividing cells (FDC) co-varied over time. Among the three, FDC was the most suitable predictor to calculate cell division rates for the selected taxa. The FDC-derived cell division rates for SAR86 of up to 0.8/day and Aurantivirga of up to 1.9/day differed, as expected for oligotrophs and copiotrophs. Surprisingly, SAR11 also reached high cell division rates of up to 1.9/day, even before the onset of phytoplankton blooms. For all four taxonomic groups, the abundance-derived net growth (-0.6 to 0.5/day) was about an order of magnitude lower than the cell division rates. Consequently, mortality rates were comparably high to cell division rates, indicating that about 90% of bacterial production is recycled without apparent time lag within 1 day. Our study shows that determining taxon-specific cell division rates complements omics-based tools and provides unprecedented clues on individual bacterial growth strategies including bottom-up and top-down controls. IMPORTANCE The growth of a microbial population is often calculated from their numerical abundance over time. However, this does not take cell division and mortality rates into account, which are important for deriving ecological processes like bottom-up and top-down control. In this study, we determined growth by numerical abundance and calibrated microscopy-based methods to determine the frequency of dividing cells and subsequently calculate taxon-specific cell division rates in situ. The cell division and mortality rates of two oligotrophic (SAR11 and SAR86) and two copiotrophic (Bacteroidetes and Aurantivirga) taxa during two spring phytoplankton blooms showed a tight coupling for all four taxa throughout the blooms without any temporal offset. Unexpectedly, SAR11 showed high cell division rates days before the bloom while cell abundances remained constant, which is indicative of strong top-down control. Microscopy remains the method of choice to understand ecological processes like top-down and bottom-up control on a cellular level.


Assuntos
Bacteroidetes , Fitoplâncton , Bacteroidetes/genética , Fitoplâncton/genética , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Controle da População , Água do Mar/microbiologia , Bactérias , Divisão Celular
6.
Microbiome ; 11(1): 77, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069671

RESUMO

BACKGROUND: Blooms of marine microalgae play a pivotal role in global carbon cycling. Such blooms entail successive blooms of specialized clades of planktonic bacteria that collectively remineralize gigatons of algal biomass on a global scale. This biomass is largely composed of distinct polysaccharides, and the microbial decomposition of these polysaccharides is therefore a process of prime importance. RESULTS: In 2020, we sampled a complete biphasic spring bloom in the German Bight over a 90-day period. Bacterioplankton metagenomes from 30 time points allowed reconstruction of 251 metagenome-assembled genomes (MAGs). Corresponding metatranscriptomes highlighted 50 particularly active MAGs of the most abundant clades, including many polysaccharide degraders. Saccharide measurements together with bacterial polysaccharide utilization loci (PUL) expression data identified ß-glucans (diatom laminarin) and α-glucans as the most prominent and actively metabolized dissolved polysaccharide substrates. Both substrates were consumed throughout the bloom, with α-glucan PUL expression peaking at the beginning of the second bloom phase shortly after a peak in flagellate and the nadir in bacterial total cell counts. CONCLUSIONS: We show that the amounts and composition of dissolved polysaccharides, in particular abundant storage polysaccharides, have a pronounced influence on the composition of abundant bacterioplankton members during phytoplankton blooms, some of which compete for similar polysaccharide niches. We hypothesize that besides the release of algal glycans, also recycling of bacterial glycans as a result of increased bacterial cell mortality can have a significant influence on bacterioplankton composition during phytoplankton blooms. Video Abstract.


Assuntos
Eutrofização , Fitoplâncton , Fitoplâncton/genética , Fitoplâncton/metabolismo , Mar do Norte , Plâncton/genética , Polissacarídeos/metabolismo , Bactérias/genética , Bactérias/metabolismo
7.
Commun Biol ; 5(1): 179, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233039

RESUMO

Global change puts coastal marine systems under pressure, affecting community structure and functioning. Here, we conducted a mesocosm experiment with an integrated multiple driver design to assess the impact of future global change scenarios on plankton, a key component of marine food webs. The experimental treatments were based on the RCP 6.0 and 8.5 scenarios developed by the IPCC, which were Extended (ERCP) to integrate the future predicted changing nutrient inputs into coastal waters. We show that simultaneous influence of warming, acidification, and increased N:P ratios alter plankton dynamics, favours smaller phytoplankton species, benefits microzooplankton, and impairs mesozooplankton. We observed that future environmental conditions may lead to the rise of Emiliania huxleyi and demise of Noctiluca scintillans, key species for coastal planktonic food webs. In this study, we identified a tipping point between ERCP 6.0 and ERCP 8.5 scenarios, beyond which alterations of food web structure and dynamics are substantial.


Assuntos
Dinoflagellida , Plâncton , Biomassa , Cadeia Alimentar , Fitoplâncton
8.
Glob Chang Biol ; 28(8): 2804-2819, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35068029

RESUMO

Phytoplanktonic organisms are particularly sensitive to environmental change, and, as they represent a direct link between abiotic and biotic compartments within the marine food web, changes in the functional structure of phytoplankton communities can result in profound impacts on ecosystem functioning. Using a trait-based approach, we examined changes in the functional structure of the southern North Sea phytoplankton over the past five decades in relation to environmental conditions. We identified a shift in functional structure between 1998 and 2004 which coincides with a pronounced increase in diatom and decrease in dinoflagellate abundances, and we provide a mechanistic explanation for this taxonomic change. Early in the 2000s, the phytoplankton functional structure shifted from slow growing, autumn blooming, mixotrophic organisms, towards earlier blooming and faster-growing microalgae. Warming and decreasing dissolved phosphorus concentrations were linked to this rapid reorganization of the functional structure. We identified a potential link between this shift and dissolved nutrient concentrations, and we hypothesise that organisms blooming early and displaying high growth rates efficiently take up nutrients which then are no longer available to late bloomers. Moreover, we identified that the above-mentioned functional change may have bottom-up consequences, through a food quality-driven negative influence on copepod abundances. Overall, our study highlights that, by altering the phytoplankton functional composition, global and regional changes may have profound long-term impacts on coastal ecosystems, impacting both food-web structure and biogeochemical cycles.


Assuntos
Diatomáceas , Dinoflagellida , Ecossistema , Eutrofização , Fitoplâncton
9.
PLoS One ; 16(1): e0244817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411833

RESUMO

In this study, we created a dataset of a continuous three-year 18S metabarcoding survey to identify eukaryotic parasitoids, and potential connections to hosts at the Long-Term Ecological Research station Helgoland Roads. The importance of parasites and parasitoids for food web dynamics has previously been recognized mostly in terrestrial and freshwater systems, while marine planktonic parasitoids have been understudied in comparison to those. Therefore, the occurrence and role of parasites and parasitoids remains mostly unconsidered in the marine environment. We observed high abundances and diversity of parasitoid operational taxonomic units in our dataset all year round. While some parasitoid groups were present throughout the year and merely fluctuated in abundances, we also detected a succession of parasitoid groups with peaks of individual species only during certain seasons. Using co-occurrence and patterns of seasonal occurrence, we were able to identify known host-parasitoid dynamics, however identification of new potential host-parasitoid interactions was not possible due to their high dynamics and variability in the dataset.


Assuntos
Interações Hospedeiro-Parasita/genética , Plâncton/genética , RNA Ribossômico 18S/genética , Animais , Código de Barras de DNA Taxonômico/métodos , Eucariotos , Cadeia Alimentar , Oceanos e Mares , Estações do Ano
11.
Front Microbiol ; 11: 1305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676057

RESUMO

Marine fungi are an important component of pelagic planktonic communities. However, it is not yet clear how individual fungal taxa are integrated in marine processes of the microbial loop and food webs. Most likely, biotic interactions play a major role in shaping the fungal community structure. Thus, the aim of our work was to identify possible biotic interactions of mycoplankton with phytoplankton and zooplankton groups and among fungi, and to investigate whether there is coherence between interactions and the dynamics, abundance and temporal occurrence of individual fungal OTUs. Marine surface water was sampled weekly over the course of 1 year, in the vicinity of the island of Helgoland in the German Bight (North Sea). The mycoplankton community was analyzed using 18S rRNA gene tag-sequencing and the identified dynamics were correlated to environmental data including phytoplankton, zooplankton, and abiotic factors. Finally, co-occurrence patterns of fungal taxa were detected with network analyses based on weighted topological overlaps (wTO). Of all abundant and persistent OTUs, 77% showed no biotic relations suggesting a saprotrophic lifestyle. Of all other fungal OTUs, nearly the half (44%) had at least one significant negative relationship, especially with zooplankton and other fungi, or to a lesser extent with phytoplankton. These findings suggest that mycoplankton OTUs are embedded into marine food web chains via highly complex and manifold relationships such as parasitism, predation, grazing, or allelopathy. Furthermore, about one third of all rare OTUs were part of a dense fungal co-occurrence network probably stabilizing the fungal community against environmental changes and acting as functional guilds or being involved in fungal cross-feeding. Placed in an ecological context, strong antagonistic relationships of the mycoplankton community with other components of the plankton suggest that: (i) there is a top-down control by fungi on zooplankton and phytoplankton; (ii) fungi serve as a food source for zooplankton and thereby transfer nutrients and organic material; (iii) the dynamics of fungi harmful to other plankton groups are controlled by antagonistic fungal taxa.

12.
J Plankton Res ; 42(3): 305-319, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494090

RESUMO

The dynamics of diatoms and dinoflagellates have been monitored for many decades at the Helgoland Roads Long-Term Ecological Research site and are relatively well understood. In contrast, small-sized eukaryotic microbes and their community changes are still much more elusive, mainly due to their small size and uniform morphology, which makes them difficult to identify microscopically. By using next-generation sequencing, we wanted to shed light on the Helgoland planktonic community dynamics, including nano- and picoplankton, during a spring bloom. We took samples from March to May 2016 and sequenced the V4 region of the 18S rDNA. Our results showed that mixotrophic and heterotrophic taxa were more abundant than autotrophic diatoms. Dinoflagellates dominated the sequence assemblage, and several small-sized eukaryotic microbes like Haptophyta, Choanoflagellata, Marine Stramenopiles and Syndiniales were identified. A diverse background community including taxa from all size classes was present during the whole sampling period. Five phases with several communities were distinguished. The fastest changes in community composition took place in phase 3, while the communities from phases 1 to 5 were more similar to each other despite contrasting environmental conditions. Synergy effects of next-generation sequencing and traditional methods may be exploited in future long-term observations.

13.
PLoS One ; 15(6): e0233921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32569285

RESUMO

In May 2016, the remote-controlled Automated Filtration System for Marine Microbes (AUTOFIM) was implemented in parallel to the Long Term Ecological Research (LTER) observatory Helgoland Roads in the German Bight. We collected samples for characterization of dynamics within the eukaryotic microbial communities at the end of a phytoplankton bloom via 18S meta-barcoding. Understanding consequences of environmental change for key marine ecosystem processes, such as phytoplankton bloom dynamics requires information on biodiversity and species occurrences with adequate temporal and taxonomic resolution via time series observations. Sampling automation and molecular high throughput methods can serve these needs by improving the resolution of current conventional marine time series observations. A technical evaluation based on an investigation of eukaryotic microbes using the partial 18S rRNA gene suggests that automated filtration with the AUTOFIM device and preservation of the plankton samples leads to highly similar 18S community profiles, compared to manual filtration and snap freezing. The molecular data were correlated with conventional microscopic counts. Overall, we observed substantial change in the eukaryotic microbial community structure during the observation period. A simultaneous decline of diatom and ciliate sequences succeeded a peak of Miracula helgolandica, suggesting a potential impact of these oomycete parasites on diatom bloom dynamics and phenology in the North Sea. As oomycetes are not routinely counted at Helgoland Roads LTER, our findings illustrate the benefits of combining automated filtration with metabarcodingto augment classical time series observations, particularly for taxa currently neglected due to methodological constraints.


Assuntos
Eucariotos/classificação , Microbiota , Fitoplâncton/classificação , Código de Barras de DNA Taxonômico , Eucariotos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mar do Norte , Filogenia , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , RNA Ribossômico 18S/genética , Estações do Ano , Água do Mar
14.
Environ Microbiol ; 22(5): 1884-1900, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32128969

RESUMO

Spring phytoplankton blooms in temperate environments contribute disproportionately to global marine productivity. Bloom-derived organic matter, much of it occurring as polysaccharides, fuels biogeochemical cycles driven by interacting autotrophic and heterotrophic communities. We tracked changes in the mode of polysaccharide utilization by heterotrophic bacteria during the course of a diatom-dominated bloom in the German Bight, North Sea. Polysaccharides can be taken up in a 'selfish' mode, where initial hydrolysis is coupled to transport into the periplasm, such that little to no low-molecular weight (LMW) products are externally released to the environment. Alternatively, polysaccharides hydrolyzed by cell-surface attached or free extracellular enzymes (external hydrolysis) yield LMW products available to the wider bacterioplankton community. In the early bloom phase, selfish activity was accompanied by low extracellular hydrolysis rates of a few polysaccharides. As the bloom progressed, selfish uptake increased markedly, and external hydrolysis rates increased, but only for a limited range of substrates. The late bloom phase was characterized by high external hydrolysis rates of a broad range of polysaccharides and reduced selfish uptake of polysaccharides, except for laminarin. Substrate utilization mode is related both to substrate structural complexity and to the bloom-stage dependent composition of the heterotrophic bacterial community.


Assuntos
Bactérias/metabolismo , Diatomáceas/metabolismo , Eutrofização/fisiologia , Fitoplâncton/metabolismo , Polissacarídeos/metabolismo , Organismos Aquáticos , Bactérias/genética , Diatomáceas/genética , Processos Heterotróficos/fisiologia , Mar do Norte , Fitoplâncton/genética , Fitoplâncton/microbiologia , Estações do Ano , Água do Mar/microbiologia
15.
Proc Natl Acad Sci U S A ; 117(12): 6599-6607, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32170018

RESUMO

Marine microalgae sequester as much CO2 into carbohydrates as terrestrial plants. Polymeric carbohydrates (i.e., glycans) provide carbon for heterotrophic organisms and constitute a carbon sink in the global oceans. The quantitative contributions of different algal glycans to cycling and sequestration of carbon remain unknown, partly because of the analytical challenge to quantify glycans in complex biological matrices. Here, we quantified a glycan structural type using a recently developed biocatalytic strategy, which involves laminarinase enzymes that specifically cleave the algal glycan laminarin into readily analyzable fragments. We measured laminarin along transects in the Arctic, Atlantic, and Pacific oceans and during three time series in the North Sea. These data revealed a median of 26 ± 17% laminarin within the particulate organic carbon pool. The observed correlation between chlorophyll and laminarin suggests an annual production of algal laminarin of 12 ± 8 gigatons: that is, approximately three times the annual atmospheric carbon dioxide increase by fossil fuel burning. Moreover, our data revealed that laminarin accounted for up to 50% of organic carbon in sinking diatom-containing particles, thus substantially contributing to carbon export from surface waters. Spatially and temporally variable laminarin concentrations in the sunlit ocean are driven by light availability. Collectively, these observations highlight the prominent ecological role and biogeochemical function of laminarin in oceanic carbon export and energy flow to higher trophic levels.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/análise , Clorofila/análise , Diatomáceas/química , Glucanos/análise , Oceanos e Mares , Água do Mar
16.
Mar Pollut Bull ; 149: 110488, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421564

RESUMO

To understand and predict the outbreak of red tides, which are often dominated by mixotrophic dinoflagellates (MTDs), the effects of "top-down" control by co-occurring predators on red-tide MTDs should be taken into consideration. We studied the numerical and functional responses of the tintinnid ciliate Favella ehrenbergii feeding on two red-tide MTDs, Scrippsiella trochoidea and Heterocapsa triquetra, under single and mixed prey conditions. Our results suggest that a mixed diet could support a better growth of predators compared to a monodiet. In addition, the predators preferred to graze S. trochoidea in the mixed diets, suggesting that predators may switch their feeding preference. The grazing by tintinnid predators could potentially inhibit the outbreaks of red tides dominated by MTDs. The findings in this study provide basic data and new insights for understanding the complex predator-prey relationships in marine microbial food webs, and the dynamics of red tides dominated by MTDs.


Assuntos
Dinoflagellida , Cadeia Alimentar , Proliferação Nociva de Algas , Animais , Dieta , Dinoflagellida/crescimento & desenvolvimento , Comportamento Predatório
17.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737345

RESUMO

Plankton communities consist of complex microbial consortia that change over time. These fluctuations can be only partially explained by limiting resources. Biotic factors such as herbivores and pathogens also contribute to the control of algal blooms. Here we address the effects of algicidal bacteria on a natural plankton community in an indoor enclosure experiment. The algicidal bacteria, introduced into plankton taken directly from the North Sea during a diatom bloom, caused the rapid decline of the bloom-forming Chaetoceros socialis within only 1 day. The haptophyte Phaeocystis, in contrast, is resistant to the lytic bacteria and could benefit from the removal of the competitor, as indicated by an onset of a bloom in the treated enclosures. This cascading effect caused by the bacterial pathogen accelerated the succession of Phaeocystis, which bloomed with a delay of only several weeks in the in situ waters at Helgoland Roads in the North Sea. The algicidal bacteria can thus modulate the community within the limits of the abiotic and biotic conditions of the local environment. Implications of our findings for plankton ecosystem functioning are discussed.IMPORTANCE Plankton communities change on a seasonal basis in temperate systems, with distinct succession patterns; this is mainly due to algal species that have their optimal timing relative to environmental conditions. We know that bacterial populations are also instrumental in the decay and termination of phytoplankton blooms. Here, we describe algicidal bacteria as modulators of this important species succession. Upon treatment of a natural plankton consortium with an algicidal bacterium, we observed a strong shift in the phytoplankton community structure, compared to controls, resulting in formation of a succeeding Phaeocystis bloom. Blooms of this alga have a substantial impact on global biogeochemical and ecological cycles, as they are responsible for a substantial proportion of primary production during spring in the North Sea. We propose that one of the key factors influencing such community shifts may be algicidal bacteria.


Assuntos
Antibiose , Flavobacteriaceae/crescimento & desenvolvimento , Flavobacteriaceae/fisiologia , Plâncton/crescimento & desenvolvimento , Água do Mar/microbiologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Ecossistema , Eutrofização/efeitos dos fármacos , Biologia Marinha , Mar do Norte , Controle Biológico de Vetores , Fitoplâncton/efeitos dos fármacos , Dinâmica Populacional , Estações do Ano
18.
Nat Ecol Evol ; 1(3): 67, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28812743

RESUMO

Climate change, land-use change, pollution and exploitation are among the main drivers of species' population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species' population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance. We found a consistent impact of temperature change on the local abundances of terrestrial species. Populations of warm-dwelling species increased more than those of cold-dwelling species. In contrast, impacts of temperature change on aquatic species' abundances were variable. Effects of temperature preference were more consistent in terrestrial communities than effects of habitat preference, suggesting that the impacts of temperature change have become widespread for recent changes in abundance within many terrestrial communities of central Europe.

19.
Front Microbiol ; 8: 65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197132

RESUMO

Carbohydrates represent an important fraction of labile and semi-labile marine organic matter that is mainly comprised of exopolymeric substances derived from phytoplankton exudation and decay. This study investigates the composition of total combined carbohydrates (tCCHO; >1 kDa) and the community development of free-living (0.2-3 µm) and particle-associated (PA) (3-10 µm) bacterioplankton during a spring phytoplankton bloom in the southern North Sea. Furthermore, rates were determined for the extracellular enzymatic hydrolysis that catalyzes the initial step in bacterial organic matter remineralization. Concentrations of tCCHO greatly increased during bloom development, while the composition showed only minor changes over time. The combined concentration of glucose, galactose, fucose, rhamnose, galactosamine, glucosamine, and glucuronic acid in tCCHO was a significant factor shaping the community composition of the PA bacteria. The richness of PA bacteria greatly increased in the post-bloom phase. At the same time, the increase in extracellular ß-glucosidase activity was sufficient to explain the observed decrease in tCCHO, indicating the efficient utilization of carbohydrates by the bacterioplankton community during the post-bloom phase. Our results suggest that carbohydrate concentration and composition are important factors in the multifactorial environmental control of bacterioplankton succession and the enzymatic hydrolysis of organic matter during phytoplankton blooms.

20.
Elife ; 5: e11888, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27054497

RESUMO

A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Eutrofização , Plâncton/microbiologia , Água do Mar/microbiologia , Bactérias/genética , Alemanha , Metagenômica , Mar do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...