Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 284(10): e21636, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708510

RESUMO

Size plays an important role in mammalian ecology. Accurate prediction of body mass is therefore critical for inferring aspects of ecology in extinct mammals. The unique digestive physiology of extant ruminant artiodactyls, in particular, is suggested to place constraints on their body mass depending on the type of food resources available. Therefore, reliable body mass estimates could provide insight into the habitat preferences of extinct ruminants. While most regression equations proposed thus far have used craniodental predictors, which for ungulates may produce misleading estimates based on indirect relationships between tooth dimensions and size, postcranial bones support the body and may be more accurate predictors of body mass. Here, I use phylogenetically informed bivariate and multiple regression techniques to establish predictive equations for body mass in 101 species of extant ruminant artiodactyls based on 56 postcranial measurements. Within limb elements, stepwise multiple regression models were typically preferred, though bivariate models often received comparable support based on Akaike's information criterion scores. The globally preferred model for predicting mass is a model including both proximal and distal width of the humerus, though several models from the radioulna received comparable support. In general, widths of long bones were good predictors, while lengths and midshaft circumferences were not. Finally, I show that where the best elements for prediction are unavailable for fossil taxa, selection of the model with lowest percent prediction error for the lowest level clade to which the fossil can be assigned could be a productive and novel way forward for predicting mass and subsequently aspects of ecology in fossil mammals.


Assuntos
Extremidades , Ruminantes , Animais , Fósseis , Úmero
2.
Proc Biol Sci ; 288(1957): 20210937, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403640

RESUMO

Vertebrates employ an impressive range of strategies for coordinating their limb movements while walking. Although this gait variation has been quantified and hypotheses for its origins tested in select tetrapod lineages, a comprehensive understanding of gait evolution in a macroevolutionary context is currently lacking. We used freely available internet videos to nearly double the number of species with quantitative gait data, and used phylogenetic comparative methods to test key hypotheses about symmetrical gait origin and evolution. We find strong support for an ancestral lateral-sequence diagonal-couplet gait in quadrupedal gnathostomes, and this mode is remarkably conserved throughout tetrapod phylogeny. Evolutionary rate analyses show that mammals overcame this ancestral constraint, resulting in a greater range of phase values than any other tetrapod lineage. Diagonal-sequence diagonal-couplet gaits are significantly associated with arboreality in mammals, though this relationship is not recovered for other tetrapod lineages. Notably, the lateral-sequence lateral-couplet gait, unique to mammals among extant tetrapods, is not associated with any traditional explanations. The complex drivers of gait diversification in mammals remain unclear, but our analyses suggest that their success was due, in part, to release from a locomotor constraint that has probably persisted in other extant tetrapod lineages for over 375 Myr.


Assuntos
Locomoção , Caminhada , Animais , Fenômenos Biomecânicos , Marcha , Mamíferos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...