Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 31(12): 1137-43, 2001 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11583926

RESUMO

We report efficient germ-line transformation in the yellow fever mosquito Aedes aegypti accomplished using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Two transgenic lines were established and characterized; each contained the Vg-Defensin A transgene with strong eye-specific expression of the enhanced green fluorescent protein (EGFP) marker gene regulated by the artificial 3xP3 promoter. Southern blot hybridization and inverse PCR analyses of genomic DNA demonstrated a precise piggyBac-mediated, single copy insertion of the pBac[3xP3-EGFP afm,Vg-DefA] transposon in each transgenic line. For each line, genetic analysis confirmed stability and integrity of the entire transposon construct in the mosquito genome through the G2-G6 generations. Successful establishment of homozygous transgenic lines indicated that in both cases a non-lethal integration of the transposon into the mosquito genome had occurred. The 3xP3-EGFP marker was tested in mosquitoes with different genetic backgrounds. In white-eyed transgenic mosquitoes, the strong eye-specific expression of GFP was observed throughout all stages of development, starting from newly hatched first instar larvae to adults. A similar level and pattern of fluorescence was observed in red-eyed mosquitoes that were generated by crossing the 3xP3-EGFP transformants with the kh(w) white-eye mosquitoes transformed with the Drosophila cinnabar gene. Importantly, the utility of the 3xP3-EGFP, as marker gene for transformation of wild type mosquitoes, was demonstrated by strong eye-specific GFP expression in larval and pupal stages of black-eyed hybrids of the 3xP3-EGFP white-eye transformants and the wild type Rockefeller/UGAL strain. Finally, analysis of the Vg-DefA transgene expression in transformants from two established lines demonstrated strong blood-meal activation and fat-body-specific expression regulated by the Vg 1.8-kb 5' upstream region.


Assuntos
Aedes , Baculoviridae , Defensinas , Vetores Genéticos , Proteínas de Insetos/genética , Transformação Genética , Animais , Elementos de DNA Transponíveis , Feminino , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Regiões Promotoras Genéticas , Transgenes , Febre Amarela
2.
Insect Mol Biol ; 10(2): 113-9, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11422506

RESUMO

The piggyBac transposable element was successfully used for stable genetic transformation of the housefly Musca domestica. The construct contains the EGFP marker under the control of Pax-6 binding sites, which can drive eye-specific expression in insect species as distantly related as Drosophila melanogaster and Tribolium castaneum [Berghammer, A.J., Klingler, M. and Wimmer, E.A. (1999) Nature 402: 370-371]. We obtained seven independent integration events among 41 fertile G0 Musca flies. Most of the transformed lines contained two or more chromosomal insertions of the EGFP marker which were stably inherited over more than 15 generations. piggyBac-mediated transposition was verified by identifying the characteristic TTAA duplication at the insertion sites. This first report of stable transmission of a genetic marker in Musca confirms the use of this vector-marker system for effective gene transfer in a broad range of insect species.


Assuntos
Baculoviridae , Elementos de DNA Transponíveis , Vetores Genéticos , Moscas Domésticas/genética , Mariposas/genética , Transformação Genética , Animais , Expressão Gênica , Marcadores Genéticos , Proteínas de Fluorescência Verde , Larva , Proteínas Luminescentes/genética
3.
Development ; 127(18): 3993-9, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10952897

RESUMO

In Drosophila, the gradient of the Bicoid (Bcd) morphogen organizes the anteroposterior axis while the ends of the embryo are patterned by the maternal terminal system. At the posterior pole, expression of terminal gap genes is mediated by the local activation of the Torso receptor tyrosine kinase (Tor). At the anterior, terminal gap genes are also activated by the Tor pathway but Bcd contributes to their activation. Here we present evidence that Tor and Bcd act independently on common target genes in an additive manner. Furthermore, we show that the terminal maternal system is not required for proper head development, since high levels of Bcd activity can functionally rescue the lack of terminal system activity at the anterior pole. This observation is consistent with a recent evolution of an anterior morphogenetic center consisting of Bcd and anterior Tor function.


Assuntos
Padronização Corporal , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Cabeça/embriologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transativadores/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Insetos/genética , Mutação , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/genética , Transativadores/genética , Transgenes/genética
4.
Science ; 287(5462): 2476-9, 2000 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-10741965

RESUMO

The maternal determinant Bicoid (Bcd) represents the paradigm of a morphogen that provides positional information for pattern formation. However, as bicoid seems to be a recently acquired gene in flies, the question was raised as to how embryonic patterning is achieved in organisms with more ancestral modes of development. Because the phylogenetically conserved Hunchback (Hb) protein had previously been shown to act as a morphogen in abdominal patterning, we asked which functions of Bcd could be performed by Hb. By reestablishing a proposed ancient regulatory circuitry in which maternal Hb controls zygotic hunchback expression, we show that Hb is able to form thoracic segments in the absence of Bcd.


Assuntos
Padronização Corporal , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila , Drosophila/embriologia , Proteínas de Homeodomínio/fisiologia , Proteínas de Insetos/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Drosophila/genética , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Masculino , Mutação , Fenótipo , Regiões Promotoras Genéticas , Tórax/embriologia , Transativadores/genética , Fatores de Transcrição/genética , Transgenes , Dedos de Zinco , Zigoto/fisiologia
5.
Dev Genes Evol ; 210(12): 623-9, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11151299

RESUMO

The efficiency of transposon-mediated germline transformation is dependent on the transposon mobility in the host embryo, and on the detectability of the used transformation marker. Therefore, high susceptibility of the transformation marker to position effect suppression is a disadvantage. Here we present data that the eye-specific expression of green fluorescent protein, driven by the 3xP3-EGFP marker, outperforms the commonly used "mini"-white transformation marker in Drosophila germline transformation experiments: 3xP3-EGFP is more sensitive than "mini"-white in identifying transgenic individuals and reacts differently to position effect suppression. Therefore, 3xP3-EGFP offers an ideal marker for applications in functional genomics where as many gene loci as possible should be targeted in the genome of a specific organism, for example, as intended in the Drosophila gene disruption project. Furthermore, we give a detailed description of the embryonic and larval expression mediated by the 3xP3-EGFP marker. These pre-adult expression patterns, and the potentially universal applicability of the transformation marker also offer additional advantages for selecting transgenic individuals in organisms other than Drosophila. This will be of great interest to the field of evolutionary developmental biology and to modern pest management programs.


Assuntos
Drosophila/genética , Marcadores Genéticos , Transformação Genética , Transgenes , Animais , Corantes Fluorescentes , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Sensibilidade e Especificidade
6.
Dev Genes Evol ; 210(12): 630-7, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11151300

RESUMO

Genetic manipulation of a series of diverged arthropods is a highly desirable goal for a better understanding of developmental and evolutionary processes. A major obstacle so far has been the difficulty in obtaining marker genes that allow easy and reliable identification of transgenic animals. Here, we present a versatile vector set for germline transformation based on the promiscuous transposons mariner, Hermes and piggyBac. Into these vectors, we introduced a potentially universal marker system that is comprised of an artificial promoter containing three Pax-6 homodimer binding sites. This promoter drives strong expression of spectral variants of the enhanced green fluorescent protein (EGFP) in larval, pupal, and adult photoreceptors. Using special filter sets, the yellow (EYFP) and cyan (ECFP) variant are fully distinguishable and therefore represent a separable pair of markers. Furthermore, we adapted a simple plasmid-based transposition assay system to enable quick functional tests of our vectors in different arthropod species before employing them in more laborious germline transformation experiments. Using this system we demonstrate that our vectors transpose in both Drosophila melanogaster and Drosophila virilis.


Assuntos
Animais Geneticamente Modificados , Vetores Genéticos , Animais , Sequência de Bases , Primers do DNA , Elementos de DNA Transponíveis
8.
Mech Dev ; 89(1-2): 125-32, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10559487

RESUMO

The Drosophila gene buttonhead (btd) is required for the formation of the mandibular, the intercalary and the antennal head segments of the embryo. The btd protein (BTD) is functionally and structurally related to the human C(2)H(2) zinc finger transcription factor Sp1. A second Sp1-like Drosophila gene, termed Drosophila Sp1 (D-Sp1), had been identified on the basis of a partial sequence showing that the gene encodes a characteristic zinc finger domain, composed of three finger motifs similar to both Sp1 and btd. D-Sp1 is located in the same cytological location as btd in chromosome band 9A on the X-chromosome. It had been proposed that D-Sp1 and btd are likely to act as a gene pair and function in a at least partially redundant manner. Here we report the molecular analysis of D-Sp1 and its expression pattern during embryonic and larval development. We show that D-Sp1 acts as a transcriptional regulator. Lack-of-function analysis combined with rescue and gain-of-function studies indicates that btd and D-Sp1 play essential and redundant roles for mechanosensory organ development. However, D-Sp1 lacks the specific features of BTD required for embryonic intercalary and antennal segment formation.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Drosophila/genética , Fator de Transcrição Sp1/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/embriologia , Humanos , Mandíbula/embriologia , Dados de Sequência Molecular , Mutação , Sistema Nervoso Periférico/embriologia , Órgãos dos Sentidos/embriologia , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Asas de Animais/embriologia , Dedos de Zinco/genética
9.
Proc Natl Acad Sci U S A ; 96(8): 4461-6, 1999 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-10200284

RESUMO

Four maternal systems are known to pattern the early Drosophila embryo. The key component of the anterior system is the homeodomain protein Bicoid (Bcd). Bcd needs the contribution of another anterior morphogen, Hunchback (Hb), to function properly: Bcd and Hb synergize to organize anterior development. A molecular mechanism for this synergy has been proposed to involve specific interactions of Bcd and Hb with TATA-binding protein-associated factors (TAFIIs) that are components of the general transcription machinery. Bcd contains three putative activation domains: a glutamine-rich region, which interacts in vitro with TAFII110; an alanine-rich domain, which targets TAFII60; and a C-terminal acidic region, which has an unknown role. We have generated flies carrying bcd transgenes lacking one or several of these domains to test their function in vivo. Surprisingly, a bcd transgene that lacks all three putative activation domains is able to rescue the bcdE1 null phenotype to viability. Moreover, the development of these embryos is not affected by the presence of dominant negative mutations in TAFII110 or TAFII60. This means that the interactions observed in vitro between Bcd and TAFII60 or TAFII110 aid transcriptional activation but are dispensable for normal development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila/embriologia , Proteínas de Homeodomínio/metabolismo , Fatores Associados à Proteína de Ligação a TATA , Transativadores/metabolismo , Fator de Transcrição TFIID , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal , Proteínas de Ligação a DNA/química , Embrião não Mamífero/fisiologia , Feminino , Deleção de Genes , Impressão Genômica , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Homozigoto , Técnicas In Vitro , Proteínas de Insetos/metabolismo , Recombinação Genética , Transativadores/química , Transativadores/genética , Transcrição Gênica
10.
Development ; 124(8): 1509-17, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9108367

RESUMO

The Drosophila gap-like segmentation genes orthodenticle, empty spiracles and buttonhead (btd) are expressed and required in overlapping domains in the head region of the blastoderm stage embryo. Their expression domains correspond to two or three segment anlagen that fail to develop in each mutant. It has been proposed that these overlapping expression domains mediate head metamerization and could generate a combinatorial code to specify segment identity. To test this model, we developed a system for targeted gene expression in the early embryo, based on region specific promoters and the flp-out system. Misexpression of btd in the anterior half of the blastoderm embryo directed by the hunchback proximal promoter rescues the btd mutant head phenotype to wild-type. This indicates that, while btd activity is required for the formation of specific head segments, its ectopic expression does not disturb head development. We conclude that the spatial limits of btd expression are not instructive for metamerization of the head region and that btd activity does not contribute to a combinatorial code for specification of segment identity.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/fisiologia , Animais , Animais Geneticamente Modificados , Blastoderma , Vetores Genéticos , Cabeça/embriologia , Morfogênese
11.
Mech Dev ; 68(1-2): 139-47, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9431811

RESUMO

We describe the molecular characterization of the paired-type homeobox gene D-Ptx1 of Drosophila, a close homolog of the mouse pituitary homeobox gene Ptx1 and the unc-30 gene of C. elegans, characterized by a lysine residue at position 9 of the third alpha-helix of the homeodomain. D-Ptx1 is expressed at various restricted locations throughout embryogenesis. Initial expression of D-Ptx1 in the posterior-most region of the blastoderm embryo is controlled by fork head activity in response to the activated Ras/Raf signaling pathway. During later stages of embryonic development. D-Ptx1 transcripts and protein accumulate in the posterior portion of the midgut, in the developing Malpighian tubules, in a subset of ventral somatic muscles, and in neural cells. Phenotypic analysis of gain-of-function and lack-of-function mutant embryos show that the D-Ptx1 gene is not involved in morphologically apparent differentiation processes. We conclude that D-Ptx1 is more likely to control physiological cell functions than pattern formation during Drosophila embryogenesis.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Blastoderma , Padronização Corporal/genética , Embrião não Mamífero , Fatores de Transcrição Forkhead , Proteínas de Homeodomínio/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição Box Pareados , Fenótipo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica
12.
Mech Dev ; 59(1): 53-62, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8892232

RESUMO

The Drosophila gene buttonhead (btd) is a gap-like head segmentation gene which encodes a triple zinc finger protein structurally and functionally related to the human transcription factor Spl. Here we report the pattern of btd expression during embryogenesis. btd is not only expressed and required in the blastoderm anlagen of the antennal, intercalary and mandibular segments as reported previously, but both expression and requirement extend into the anlage of the maxillary segment. From gastrulation onwards, btd is expressed in distinct spatial and temporal patterns, suggesting that btd might be required for a number of developmental processes beyond head segmentation. In fact, analysis of btd mutant embryos revealed that btd participates in the formation of the peripheral nervous system. However, no other morphologically apparent phenotype was observed. We identified a btd-related gene, termed D-Sp1, which is expressed in temporal and spatial patterns similar to btd during postblastodermal development. No localized expression domains of D-Sp1, which is located in the same X-chromosomal band as btd, were seen during the blastoderm stage. The results suggest that D-Sp1 and btd represent a novel gene pair with partially redundant functions after the blastoderm stage.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos/genética , Fator de Transcrição Sp1/genética , Fatores de Transcrição/genética , Animais , Drosophila/embriologia , Humanos , Cromossomo X
13.
Mech Dev ; 53(2): 235-45, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8562425

RESUMO

The Drosophila gene buttonhead (btd) encodes a zinc-finger protein related to the human transcription factor Sp1. btd is expressed in the syncytial blastoderm embryo in a stripe covering the anlagen of the antennal, intercalary and mandibular head segments. btd has been characterized as a head gap gene, since these segments are deleted in btd mutant embryos. We report here that the cis-acting elements required for btd head stripe expression are contained in a 1 kb DNA fragment, located about 3 kb upstream of the promoter. The four maternal coordinate systems are necessary for correct btd head stripe expression, likely by acting through the 1 kb cis-acting control region. Expression of the btd head stripe depends on the anterior morphogen encoded by the gene bicoid (bcd). bcd-dependent activation also involves the activity of the morphogens of the posterior and dorsoventral systems, hunchback and dorsal, respectively, which act together to control the spatial limits of the expression domain. Finally, the terminal system takes part in the regulation of btd head stripe expression by enhancing activation at low levels of activity and repression at high levels of activity.


Assuntos
Blastoderma/metabolismo , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes de Insetos , Teste de Complementação Genética , Dedos de Zinco , Animais , Animais Geneticamente Modificados , Sequência de Bases , Mapeamento Cromossômico , Cabeça , Humanos , Dados de Sequência Molecular , Mutação , Zigoto/fisiologia
14.
Proc Natl Acad Sci U S A ; 91(18): 8567-71, 1994 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-8078924

RESUMO

Developmental gene functions of Drosophila are typically characterized by a recognizable mutant phenotype. When molecular probes of such genes were used to isolate homologues, distinct spatially and temporally restricted expression patterns were observed in vertebrates as well. However, corresponding "gene knock-outs" often revealed subtle or no scorable phenotypes, a phenomenon attributed to redundant gene functions. We found that the evolutionarily related genes knirps (kni) and knirps-related (knrl) contribute to a similar phenomenon in Drosophila. The two closely situated genes show identical expression patterns in the developing embryo, including the posterior and anterior expression domains in the blastoderm. Here we show that the two biochemically equivalent gene products are both functional in the head anlage and that the lack of one gene activity can be overcome by the activity of the other. Whereas kni is also required for abdominal segmentation, knrl is nonfunctional in its posterior expression domain. Thus, the kni/knrl pair of genes provides a region-specific buffering system, rather than a case of global functional redundancy.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Animais , Drosophila melanogaster/genética , Expressão Gênica , Teste de Complementação Genética , Cabeça/embriologia , Morfogênese , Família Multigênica , Sistema Nervoso/embriologia , RNA Mensageiro/genética
15.
Mech Dev ; 46(3): 169-81, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7918102

RESUMO

The Drosophila genes knirps (kni) and knirps-related (knrl) are located within the 77E1,2 region on the left arm of the third chromosome. They encode nuclear hormone-like transcription factors containing almost identical Cys2/Cys2 DNA-binding zinc finger motifs which bind to the same target sequence. kni is a member of the gap class of segmentation genes, and its activity is required for the normal establishment of the abdomen. The function of knrl is still unknown; however, a possible gap gene function in the abdominal region of the embryo can be excluded. Both genes are initially expressed in three identical regions of the blastoderm embryo: in an anterior cap domain, in an anterior stripe and in a posterior broad band linked to the kni gap gene function. The transacting factor requirement for the expression of kni and knrl is identical for the two anterior domains but different, although similar, for the posterior domain of expression in the blastoderm. Both the anteroposterior morphogen bicoid and the dorsoventral morphogen dorsal are necessary but not sufficient for the activation of the two genes in the anterior cap domain, suggesting they act together to bring about its normal spatial limits.


Assuntos
Blastoderma/fisiologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição/fisiologia , Ativação Transcricional , Animais , Feminino , Código Genético , Gravidez , RNA Polimerase II/metabolismo
16.
Nature ; 366(6456): 690-4, 1993 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-8259212

RESUMO

Segmentation in Drosophila is based on a cascade of hierarchical gene interactions initiated by maternally deposited morphogens that define the spatially restricted domains of gap gene expression at blastoderm (reviewed in ref. 1). Although segmentation of the embryonic head is morphologically obscured, the repeated patterns of expression of the segment polarity genes reflect the formation of seven head segments; two of these depend on the segmentation and homeotic genes used in the trunk, whereas the others form as a result of the activity of the head-specific genes orthodenticle (otd), empty spiracles (ems) and buttonhead (btd). The genes ems and otd encode homeodomain proteins, suggesting that they may function as transcription factors. They are expressed in overlapping stripes in the early embryonic head of Drosophila, and their vertebrate homologues, otx and emx, are expressed in overlapping domains in the anterior central nervous system of the mouse embryo. We show here that btd is expressed in a stripe covering the head analgen of the segments affected in btd lack-of-function mutants and that btd encodes a zinc-finger-type transcription factor with sequence and functional similarity to the prototype mammalian transcription factor Sp1 (ref. 9). When expressed in the spatial pattern of btd, a transgene providing Sp1 activity can support development of the mandibular segment in the head of btd mutant embryos. A ubiquitous transcription factor from humans can therefore replace an essential component of the genetic circuitry required to specify the development of a particular head segment in the fly.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Drosophila/genética , Fator de Transcrição Sp1/genética , Fatores de Transcrição/genética , Dedos de Zinco/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Técnicas de Cultura , Proteínas de Ligação a DNA/biossíntese , Drosophila/embriologia , Escherichia coli , Feminino , Cabeça/embriologia , Humanos , Larva , Masculino , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Fatores de Transcrição/biossíntese , Transcrição Gênica
17.
Mech Dev ; 33(3): 229-40, 1991 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1863558

RESUMO

The development of the leg and wing primordia in the Drosophila embryo has been traced using molecular markers. Distal-less and disconnected gene expression provide molecular labels for the leg primordia throughout embryonic development, disconnected expression in the developing leg primordia depends on Distal-less activity. The leg primordia arise as discrete clusters of cells that occupy well defined positions in the embryonic ectoderm. At later stages of embryogenesis the primordia become morphologically recognizable and are intimately associated with the development of the Keilin's organs. The presumptive leg disc and the Keilin's organ appear to derive from a common primordium. Similarly the Abnormal leg pattern gene provides a molecular label for the wing and haltere primordia. The dorsal thoracic primordia appear to be of independent origin from the legs.


Assuntos
Drosophila/embriologia , Extremidades/embriologia , Asas de Animais/embriologia , Animais , Expressão Gênica/fisiologia , Marcadores Genéticos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA