Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101534, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670100

RESUMO

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.


Assuntos
Transtorno do Espectro Autista , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas do Tecido Nervoso , Tálamo , Animais , Tálamo/metabolismo , Tálamo/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/patologia , Lamotrigina/farmacologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Canalopatias/genética , Canalopatias/metabolismo , Canalopatias/patologia , Humanos , Modelos Animais de Doenças , Masculino , Neurônios/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Mutação/genética , Sono/fisiologia , Sono/efeitos dos fármacos , Sono/genética , Canais de Potássio
2.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38260581

RESUMO

Optimizing behavioral strategy requires belief updating based on new evidence, a process that engages higher cognition. In schizophrenia, aberrant belief dynamics may lead to psychosis, but the mechanisms underlying this process are unknown, in part, due to lack of appropriate animal models and behavior readouts. Here, we address this challenge by taking two synergistic approaches. First, we generate a mouse model bearing patient-derived point mutation in Grin2a (Grin2aY700X+/-), a gene that confers high-risk for schizophrenia and recently identified by large-scale exome sequencing. Second, we develop a computationally trackable foraging task, in which mice form and update belief-driven strategies in a dynamic environment. We found that Grin2aY700X+/- mice perform less optimally than their wild-type (WT) littermates, showing unstable behavioral states and a slower belief update rate. Using functional ultrasound imaging, we identified the mediodorsal (MD) thalamus as hypofunctional in Grin2aY700X+/- mice, and in vivo task recordings showed that MD neurons encoded dynamic values and behavioral states in WT mice. Optogenetic inhibition of MD neurons in WT mice phenocopied Grin2aY700X+/- mice, and enhancing MD activity rescued task deficits in Grin2aY700X+/- mice. Together, our study identifies the MD thalamus as a key node for schizophrenia-relevant cognitive dysfunction, and a potential target for future therapeutics.

3.
Aging Dis ; 15(1): 338-356, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307826

RESUMO

Primary sclerosing cholangitis (PSC) represents a chronic liver disease characterized by poor prognosis and lacking causal treatment options. Yes-associated protein (YAP) functions as a critical mediator of fibrogenesis; however, its therapeutic potential in chronic biliary diseases such as PSC remains unestablished. The objective of this study is to elucidate the possible significance of YAP inhibition in biliary fibrosis by examining the pathophysiology of hepatic stellate cells (HSC) and biliary epithelial cells (BEC). Human liver tissue samples from PSC patients were analyzed to assess the expression of YAP/connective tissue growth factor (CTGF) relative to non-fibrotic control samples. The pathophysiological relevance of YAP/CTGF in HSC and BEC was investigated in primary human HSC (phHSC), LX-2, H69, and TFK-1 cell lines through siRNA or pharmacological inhibition utilizing verteporfin (VP) and metformin (MF). The Abcb4-/- mouse model was employed to evaluate the protective effects of pharmacological YAP inhibition. Hanging droplet and 3D matrigel culture techniques were utilized to investigate YAP expression and activation status of phHSC under various physical conditions. YAP/CTGF upregulation was observed in PSC patients. Silencing YAP/CTGF led to inhibition of phHSC activation and reduced contractility of LX-2 cells, as well as suppression of epithelial-mesenchymal transition (EMT) in H69 cells and proliferation of TFK-1 cells. Pharmacological inhibition of YAP mitigated chronic liver fibrosis in vivo and diminished ductular reaction and EMT. YAP expression in phHSC was effectively modulated by altering extracellular stiffness, highlighting YAP's role as a mechanotransducer. In conclusion, YAP regulates the activation of HSC and EMT in BEC, thereby functioning as a checkpoint of fibrogenesis in chronic cholestasis. Both VP and MF demonstrate effectiveness as YAP inhibitors, capable of inhibiting biliary fibrosis. These findings suggest that VP and MF warrant further investigation as potential therapeutic options for the treatment of PSC.


Assuntos
Colestase , Células Estreladas do Fígado , Camundongos , Animais , Humanos , Cirrose Hepática/tratamento farmacológico , Fibrose , Colestase/metabolismo , Ductos Biliares , Epitélio/metabolismo
4.
Cognit Comput ; 15(4): 1167-1189, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37771569

RESUMO

Background: Prefrontal cortical neurons play essential roles in performing rule-dependent tasks and working memory-based decision making. Methods: Motivated by PFG recordings of task-performing mice, we developed an excitatory-inhibitory spiking recurrent neural network (SRNN) to perform a rule-dependent two-alternative forced choice (2AFC) task. We imposed several important biological constraints onto the SRNN, and adapted spike frequency adaptation (SFA) and SuperSpike gradient methods to train the SRNN efficiently. Results: The trained SRNN produced emergent rule-specific tunings in single-unit representations, showing rule-dependent population dynamics that resembled experimentally observed data. Under varying test conditions, we manipulated the SRNN parameters or configuration in computer simulations, and we investigated the impacts of rule-coding error, delay duration, recurrent weight connectivity and sparsity, and excitation/inhibition (E/I) balance on both task performance and neural representations. Conclusions: Overall, our modeling study provides a computational framework to understand neuronal representations at a fine timescale during working memory and cognitive control, and provides new experimentally testable hypotheses in future experiments.

5.
Gastroenterology ; 165(1): 187-200.e7, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36966941

RESUMO

BACKGROUND & AIMS: Excess copper causes hepatocyte death in hereditary Wilson's disease (WD). Current WD treatments by copper-binding chelators may gradually reduce copper overload; they fail, however, to bring hepatic copper close to normal physiological levels. Consequently, lifelong daily dose regimens are required to hinder disease progression. This may result in severe issues due to nonadherence or unwanted adverse drug reactions and also due to drug switching and ultimate treatment failures. This study comparatively tested bacteria-derived copper binding agents-methanobactins (MBs)-for efficient liver copper depletion in WD rats as well as their safety and effect duration. METHODS: Copper chelators were tested in vitro and in vivo in WD rats. Metabolic cage housing allowed the accurate assessment of animal copper balances and long-term experiments related to the determination of minimal treatment phases. RESULTS: We found that copper-binding ARBM101 (previously known as MB-SB2) depletes WD rat liver copper dose dependently via fecal excretion down to normal physiological levels within 8 days, superseding the need for continuous treatment. Consequently, we developed a new treatment consisting of repetitive cycles, each of ∼1 week of ARBM101 applications, followed by months of in-between treatment pauses to ensure a healthy long-term survival in WD rats. CONCLUSIONS: ARBM101 safely and efficiently depletes excess liver copper from WD rats, thus allowing for short treatment periods as well as prolonged in-between rest periods.


Assuntos
Degeneração Hepatolenticular , Ratos , Animais , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre , Eliminação Hepatobiliar , Fígado/metabolismo , Quelantes/farmacologia , Quelantes/uso terapêutico
6.
Cells ; 11(15)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954188

RESUMO

Bile salts accumulating during cholestatic liver disease are believed to promote liver fibrosis. We have recently shown that chenodeoxycholate (CDC) induces expansion of hepatic stellate cells (HSCs) in vivo, thereby promoting liver fibrosis. Mechanisms underlying bile salt-induced fibrogenesis remain elusive. We aimed to characterize the effects of different bile salts on HSC biology and investigated underlying signaling pathways. Murine HSCs (mHSCs) were stimulated with hydrophilic and hydrophobic bile salts. Proliferation, cell mass, collagen deposition, and activation of signaling pathways were determined. Activation of the human HSC cell line LX 2 was assessed by quantification of α-smooth muscle actin (αSMA) expression. Phosphatidyl-inositol-3-kinase (PI3K)-dependent signaling was inhibited both pharmacologically and by siRNA. CDC, the most abundant bile salt accumulating in human cholestasis, but no other bile salt tested, induced Protein kinase B (PKB) phosphorylation and promoted HSC proliferation and subsequent collagen deposition. Pharmacological inhibition of the upstream target PI3K-inhibited activation of PKB and pro-fibrogenic proliferation of HSCs. The PI3K p110α-specific inhibitor Alpelisib and siRNA-mediated knockdown of p110α ameliorated pro-fibrogenic activation of mHSC and LX 2 cells, respectively. In summary, pro-fibrogenic signaling in mHSCs is selectively induced by CDC. PI3K p110α may be a potential therapeutic target for the inhibition of bile salt-induced fibrogenesis in cholestasis.


Assuntos
Colestase , Células Estreladas do Fígado , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Proliferação de Células , Colestase/patologia , Colágeno/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/metabolismo , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , RNA Interferente Pequeno/metabolismo
7.
Cell Mol Gastroenterol Hepatol ; 13(1): 95-112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34537439

RESUMO

BACKGROUND & AIMS: Progression of chronic liver disease (CLD) to liver cirrhosis and liver cancer is a major global cause of morbidity and mortality. Treatment options capable of inhibiting progression of liver fibrosis when etiological treatment of CLD is not available or fails have yet to be established. We investigated the role of serine/threonine kinase p70 ribosomal protein S6 kinase (p70S6K) as checkpoint of fibrogenesis in hepatic stellate cells (HSCs) and as target for the treatment of liver fibrosis. APPROACH & RESULTS: Immunohistochemistry was used to assess p70S6K expression in liver resection specimen. Primary human or murine HSCs from wild-type or p70S6K-/- mice as well as LX-2 cells were used for in vitro experiments. Specific small interfering RNA or CEP-1347 were used to silence or inhibit p70S6K and assess its functional relevance in viability, contraction and migration assays, fluorescence-activated cell sorting, and Western blot. These results were validated in vivo by a chemical model of fibrogenesis using wild-type and p70S6K-/- mice. Expression of p70S6K was significantly increased in human cirrhotic vs noncirrhotic liver-tissue and progressively increased in vitro through activation of primary human HSCs. Conversely, p70S6K induced fibrogenic activation of HSCs in different models, including the small interfering RNA-based silencing of p70S6K in HSC lines, experiments with p70S6K-/- cells, and the pharmacological inhibition of p70S6K by CEP-1347. These findings were validated in vivo as p70S6K-/- mice developed significantly less fibrosis upon exposure to CCl4. CONCLUSIONS: We establish p70S6K as a checkpoint of fibrogenesis in vitro and in vivo and CEP-1347 as potential treatment option that can safely be used for long-term treatment.


Assuntos
Células Estreladas do Fígado , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Proliferação de Células , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/genética , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Transdução de Sinais
8.
Hepatology ; 75(2): 322-337, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34435364

RESUMO

BACKGROUND AND AIMS: In patients with acute liver failure (ALF) who suffer from massive hepatocyte loss, liver progenitor cells (LPCs) take over key hepatocyte functions, which ultimately determines survival. This study investigated how the expression of hepatocyte nuclear factor 4α (HNF4α), its regulators, and targets in LPCs determines clinical outcome of patients with ALF. APPROACH AND RESULTS: Clinicopathological associations were scrutinized in 19 patients with ALF (9 recovered and 10 receiving liver transplantation). Regulatory mechanisms between follistatin, activin, HNF4α, and coagulation factor expression in LPC were investigated in vitro and in metronidazole-treated zebrafish. A prospective clinical study followed up 186 patients with cirrhosis for 80 months to observe the relevance of follistatin levels in prevalence and mortality of acute-on-chronic liver failure. Recovered patients with ALF robustly express HNF4α in either LPCs or remaining hepatocytes. As in hepatocytes, HNF4α controls the expression of coagulation factors by binding to their promoters in LPC. HNF4α expression in LPCs requires the forkhead box protein H1-Sma and Mad homolog 2/3/4 transcription factor complex, which is promoted by the TGF-ß superfamily member activin. Activin signaling in LPCs is negatively regulated by follistatin, a hepatocyte-derived hormone controlled by insulin and glucagon. In contrast to patients requiring liver transplantation, recovered patients demonstrate a normal activin/follistatin ratio, robust abundance of the activin effectors phosphorylated Sma and Mad homolog 2 and HNF4α in LPCs, leading to significantly improved coagulation function. A follow-up study indicated that serum follistatin levels could predict the incidence and mortality of acute-on-chronic liver failure. CONCLUSIONS: These results highlight a crucial role of the follistatin-controlled activin-HNF4α-coagulation axis in determining the clinical outcome of massive hepatocyte loss-induced ALF. The effects of insulin and glucagon on follistatin suggest a key role of the systemic metabolic state in ALF.


Assuntos
Ativinas/genética , Folistatina/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Falência Hepática Aguda/metabolismo , Ativinas/metabolismo , Insuficiência Hepática Crônica Agudizada/sangue , Adulto , Idoso , Animais , Coagulação Sanguínea , Linhagem Celular , Fator V/genética , Feminino , Folistatina/sangue , Seguimentos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Humanos , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Falência Hepática Aguda/cirurgia , Regeneração Hepática , Transplante de Fígado , Masculino , Metronidazol , Camundongos , Pessoa de Meia-Idade , Prognóstico , Regiões Promotoras Genéticas , Estudos Prospectivos , Protrombina/genética , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/genética , Peixe-Zebra
9.
Nature ; 600(7887): 100-104, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34614503

RESUMO

Interactions between the mediodorsal thalamus and the prefrontal cortex are critical for cognition. Studies in humans indicate that these interactions may resolve uncertainty in decision-making1, but the precise mechanisms are unknown. Here we identify two distinct mediodorsal projections to the prefrontal cortex that have complementary mechanistic roles in decision-making under uncertainty. Specifically, we found that a dopamine receptor (D2)-expressing projection amplifies prefrontal signals when task inputs are sparse and a kainate receptor (GRIK4) expressing-projection suppresses prefrontal noise when task inputs are dense but conflicting. Collectively, our data suggest that there are distinct brain mechanisms for handling uncertainty due to low signals versus uncertainty due to high noise, and provide a mechanistic entry point for correcting decision-making abnormalities in disorders that have a prominent prefrontal component2-6.


Assuntos
Vias Neurais , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Animais , Tomada de Decisões , Feminino , Humanos , Interneurônios/fisiologia , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/fisiologia , Camundongos , Receptores Dopaminérgicos/metabolismo , Receptores de Ácido Caínico/metabolismo , Incerteza
10.
Zool Res ; 42(4): 478-481, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34213094

RESUMO

Tree shrews (Tupaia spp.) have been used in neuroscience research since the 1960s due to their evolutionary proximity to primates. The use and interest in this animal model have recently increased, in part due to the adaptation of modern neuroscience tools in this species. These tools include quantitative behavioral assays, calcium imaging, optogenetics and transgenics. To facilitate the exchange and development of these new technologies and associated research findings, we organized the inaugural "Tree Shrew Users Meeting" which was held online due to the COVID-19 pandemic. Here, we review this meeting and discuss the history of tree shrews as an animal model in neuroscience research and summarize the current themes being investigated using this animal, as well as future directions.


Assuntos
Sistema Nervoso Central/fisiologia , Modelos Animais de Doenças , Tupaiidae , Animais , Pesquisa Biomédica/métodos
11.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202693

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is rising in prevalence, and a better pathophysiologic understanding of the transition to its inflammatory phenotype (NASH) is key to the development of effective therapies. To evaluate the contribution of the NLRP3 inflammasome and its downstream effectors IL-1 and IL-18 in this process, we applied the true-to-life "American lifestyle-induced obesity syndrome" (ALiOS) diet mouse model. Development of obesity, fatty liver and liver damage was investigated in mice fed for 24 weeks according to the ALiOS protocol. Lipidomic changes in mouse livers were compared to human NAFLD samples. Receptor knockout mice for IL-1 and IL-18 were used to dissect the impact of downstream signals of inflammasome activity on the development of NAFLD. The ALiOS diet induced obesity and liver steatosis. The lipidomic changes closely mimicked changes in human NAFLD. A pro-inflammatory gene expression pattern in liver tissue and increased serum liver transaminases indicated early liver damage in the absence of histological evidence of NASH. Mechanistically, Il-18r-/-- but not Il-1r-/- mice were protected from early liver damage, possibly due to silencing of the pro-inflammatory gene expression pattern. Our study identified NLRP3 activation and IL-18R-dependent signaling as potential modulators of early liver damage in NAFLD, preceding development of histologic NASH.


Assuntos
Interleucina-18/metabolismo , Interleucina-1/metabolismo , Fígado/lesões , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais , Animais , Interleucina-1/genética , Interleucina-18/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-18/genética , Receptores de Interleucina-18/metabolismo
12.
Nature ; 583(7818): 819-824, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699411

RESUMO

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.


Assuntos
Redes Reguladoras de Genes , Núcleos Talâmicos/citologia , Núcleos Talâmicos/metabolismo , Animais , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Metaloendopeptidases/metabolismo , Camundongos , Vias Neurais , Neurônios/metabolismo , Osteopontina/metabolismo , Técnicas de Patch-Clamp , RNA-Seq , Análise de Célula Única , Sono/genética , Sono/fisiologia , Núcleos Talâmicos/fisiologia , Transcriptoma
14.
Neuron ; 107(1): 38-51.e8, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353253

RESUMO

Optogenetics is among the most widely employed techniques to manipulate neuronal activity. However, a major drawback is the need for invasive implantation of optical fibers. To develop a minimally invasive optogenetic method that overcomes this challenge, we engineered a new step-function opsin with ultra-high light sensitivity (SOUL). We show that SOUL can activate neurons located in deep mouse brain regions via transcranial optical stimulation and elicit behavioral changes in SOUL knock-in mice. Moreover, SOUL can be used to modulate neuronal spiking and induce oscillations reversibly in macaque cortex via optical stimulation from outside the dura. By enabling external light delivery, our new opsin offers a minimally invasive tool for manipulating neuronal activity in rodent and primate models with fewer limitations on the depth and size of target brain regions and may further facilitate the development of minimally invasive optogenetic tools for the treatment of neurological disorders.


Assuntos
Opsinas , Optogenética/métodos , Animais , Encéfalo/fisiologia , Macaca , Camundongos , Modelos Animais , Neurônios/fisiologia
15.
Cells ; 9(2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979271

RESUMO

Hydrophobic bile salts are considered to promote liver fibrosis in cholestasis. However, evidence for this widely accepted hypothesis remains scarce. In established animal models of cholestasis, e.g., by Mdr2 knockout, cholestasis and fibrosis are both secondary to biliary damage. Therefore, to test the specific contribution of accumulating bile salts to liver fibrosis in cholestatic disease, we applied the unique model of inducible hepatocellular cholestasis in cholate-fed Atp8b1G308V/G308V mice. Glycochenodeoxycholate (GCDCA) was supplemented to humanize the murine bile salt pool, as confirmed by HPLC. Biomarkers of cholestasis and liver fibrosis were quantified. Hepatic stellate cells (HSC) isolated from wild-type mice were stimulated with bile salts. Proliferation, cell accumulation, and collagen deposition of HSC were determined. In cholestatic Atp8b1G308V/G308V mice, increased hepatic expression of αSMA and collagen1a mRNA and excess hepatic collagen deposition indicated development of liver fibrosis only upon GCDCA supplementation. In vitro, numbers of myofibroblasts and deposition of collagen were increased after incubation with hydrophobic but not hydrophilic bile salts, and associated with EGFR and MEK1/2 activation. We concluded that chronic hepatocellular cholestasis alone, independently of biliary damage, induces liver fibrosis in mice in presence of the human bile salt GCDCA. Bile salts may have direct pro-fibrotic effects on HSC, putatively involving EGFR and MEK1/2 signaling.


Assuntos
Colestase/complicações , Hepatócitos/patologia , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Adenosina Trifosfatases/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Doença Crônica , Colágeno/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica , Ácido Glicoquenodesoxicólico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Fígado/patologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
16.
Nature ; 577(7789): 249-253, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853066

RESUMO

A subset of children with autism spectrum disorder appear to show an improvement in their behavioural symptoms during the course of a fever, a sign of systemic inflammation1,2. Here we elucidate the molecular and neural mechanisms that underlie the beneficial effects of inflammation on social behaviour deficits in mice. We compared an environmental model of neurodevelopmental disorders in which mice were exposed to maternal immune activation (MIA) during embryogenesis3,4 with mouse models that are genetically deficient for contactin-associated protein-like 2 (Cntnap2)5, fragile X mental retardation-1 (Fmr1)6 or Sh3 and multiple ankyrin repeat domains 3 (Shank3)7. We establish that the social behaviour deficits in offspring exposed to MIA can be temporarily rescued by the inflammatory response elicited by the administration of lipopolysaccharide (LPS). This behavioural rescue was accompanied by a reduction in neuronal activity in the primary somatosensory cortex dysgranular zone (S1DZ), the hyperactivity of which was previously implicated in the manifestation of behavioural phenotypes associated with offspring exposed to MIA8. By contrast, we did not observe an LPS-induced rescue of social deficits in the monogenic models. We demonstrate that the differences in responsiveness to the LPS treatment between the MIA and the monogenic models emerge from differences in the levels of cytokine production. LPS treatment in monogenic mutant mice did not induce amounts of interleukin-17a (IL-17a) comparable to those induced in MIA offspring; bypassing this difference by directly delivering IL-17a into S1DZ was sufficient to promote sociability in monogenic mutant mice as well as in MIA offspring. Conversely, abrogating the expression of IL-17 receptor subunit a (IL-17Ra) in the neurons of the S1DZ eliminated the ability of LPS to reverse the sociability phenotypes in MIA offspring. Our data support a neuroimmune mechanism that underlies neurodevelopmental disorders in which the production of IL-17a during inflammation can ameliorate the expression of social behaviour deficits by directly affecting neuronal activity in the central nervous system.


Assuntos
Interleucina-17/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Comportamento Social
17.
Lab Invest ; 99(12): 1906-1917, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31467426

RESUMO

Liver cirrhosis is a life-threatening consequence of liver fibrosis. The aim of this study was to investigate the antifibrotic potential of clinically available vitamin D analogs compared to that of calcitriol in vitro and in vivo. Murine hepatic stellate cells, Kupffer cells, and human LX-2 cells were treated with vitamin D analogs, and the profibrotic behavior of these cells was studied. In vivo liver fibrosis was induced using CCl4 until measurable fibrosis was established. Animals were then treated with calcitriol and paricalcitol. Vitamin D and its analogs showed antifibrotic effects in vitro. Treatment with active vitamin D (calcitriol, CAL) and its analogs reduced the protein expression of α-smooth muscle actin (α-SMA) in mHSC. In human LX-2 cells alfacalcidol reduced transforming growth factor-ß (TGF-ß) induced platelet-derived growth factor receptor-ß protein expression and contractility while paricalcitol (PCT), in its equipotent dose to CAL, reduced TGF-ß induced α-SMA protein expression, and ACTA2 and TGF-ß mRNA expression. No effects of a treatment with vitamin D and its analogs were observed in Kupffer cells. In vivo, PCT-treated mice had significantly lower calcium levels than CAL-treated mice. CAL and PCT reduced the hepatic infiltration of CD11b-positive cells and alanine transaminase levels, while PCT but not CAL significantly inhibited fibrosis progression, with a favorable side effect profile in the CCl4 model. We conclude that hypocalcemic vitamin D analogs should be considered in future studies investigating vitamin D for the treatment of liver fibrosis.


Assuntos
Ergocalciferóis/uso terapêutico , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Animais , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Cálcio/sangue , Tetracloreto de Carbono , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Ergocalciferóis/farmacologia , Humanos , Células de Kupffer/efeitos dos fármacos , Cirrose Hepática/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Fator de Crescimento Transformador beta , Vitamina D/análogos & derivados
18.
Cell Oncol (Dordr) ; 42(5): 705-715, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31250364

RESUMO

PURPOSE: The cyclin-dependent kinases (CDKs) CDK4 and CDK6 are important regulators of the cell cycle and represent promising targets in cancer treatment. We aimed to investigate the relevance of CDK4/6 in the development of hepatocellular carcinoma (HCC) and the potential of ribociclib, a novel orally available CDK4/6 inhibitor, as a treatment for HCC. METHODS: The effect of ribociclib was assessed in native and sorafenib-resistant HCC cell lines using viability assays, colony formation assays and FACS-based analyses. The expression of potential biomarkers of ribociclib response was assessed in cell lines and primary human hepatocytes using Western blotting. In addition, the prognostic relevance of the cyclin D-CDK4/6-retinoblastoma protein (Rb) pathway was assessed by analysing mRNA expression data from The Cancer Genome Atlas (TCGA). RESULTS: We found that ribociclib downregulated Rb and caused a profound loss of cell viability by inducing G1 cell cycle arrest in HCC cell lines exhibiting Rb-high/p16-low protein expression profiles, but not in Rb-low/p16-high cells, regardless their sensitivity to sorafenib. siRNA-based Rb silencing decreased cell proliferation, but did not diminish the sensitivity of HCC cells to ribociclib. Furthermore, we found that ribociclib synergized with sorafenib to cause cell death. mRNA analysis of primary human HCC specimens showed that CDK4 expression was correlated with patient survival and that the expression of Rb and the p16-encoding CDKN2A gene were inversely correlated. CONCLUSIONS: From our data we conclude that impairment of the cyclin D-CDK4/6-Rb pathway is a frequent feature of HCC and that it is associated with a unfavourable prognosis. We also found that ribociclib exhibits a preferential antineoplastic activity in Rb-high HCC cells. Our results warrant further investigation of Rb and p16 expression as markers of HCC sensitivity to ribociclib.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Neoplasias Hepáticas/metabolismo , Purinas/farmacologia , Proteína do Retinoblastoma/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/mortalidade , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína do Retinoblastoma/antagonistas & inibidores , Proteína do Retinoblastoma/genética , Sorafenibe/farmacologia
19.
Neural Comput ; 31(7): 1380-1418, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31113299

RESUMO

The thalamus has traditionally been considered as only a relay source of cortical inputs, with hierarchically organized cortical circuits serially transforming thalamic signals to cognitively relevant representations. Given the absence of local excitatory connections within the thalamus, the notion of thalamic relay seemed like a reasonable description over the past several decades. Recent advances in experimental approaches and theory provide a broader perspective on the role of the thalamus in cognitively relevant cortical computations and suggest that only a subset of thalamic circuit motifs fits the relay description. Here, we discuss this perspective and highlight the potential role for the thalamus, and specifically the mediodorsal (MD) nucleus, in the dynamic selection of cortical representations through a combination of intrinsic thalamic computations and output signals that change cortical network functional parameters. We suggest that through the contextual modulation of cortical computation, the thalamus and cortex jointly optimize the information and cost trade-off in an emergent fashion. We emphasize that coordinated experimental and theoretical efforts will provide a path to understanding the role of the thalamus in cognition, along with an understanding to augment cognitive capacity in health and disease.


Assuntos
Inteligência Artificial , Cognição/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Córtex Cerebral/fisiologia , Humanos
20.
Cell Mol Gastroenterol Hepatol ; 7(3): 571-596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30586623

RESUMO

BACKGROUND & AIMS: In Wilson disease, ATP7B mutations impair copper excretion into bile. Hepatic copper accumulation may induce mild to moderate chronic liver damage or even acute liver failure. Etiologic factors for this heterogeneous phenotype remain enigmatic. Liver steatosis is a frequent finding in Wilson disease patients, suggesting that impaired copper homeostasis is linked with liver steatosis. Hepatic mitochondrial function is affected negatively both by copper overload and steatosis. Therefore, we addressed the question of whether a steatosis-promoting high-calorie diet aggravates liver damage in Wilson disease via amplified mitochondrial damage. METHODS: Control Atp7b+/- and Wilson disease Atp7b-/- rats were fed either a high-calorie diet (HCD) or a normal diet. Copper chelation using the high-affinity peptide methanobactin was used in HCD-fed Atp7b-/- rats to test for therapeutic reversal of mitochondrial copper damage. RESULTS: In comparison with a normal diet, HCD feeding of Atp7b-/- rats resulted in a markedly earlier onset of clinically apparent hepatic injury. Strongly increased mitochondrial copper accumulation was observed in HCD-fed Atp7b-/- rats, correlating with severe liver injury. Mitochondria presented with massive structural damage, increased H2O2 emergence, and dysfunctional adenosine triphosphate production. Hepatocellular injury presumably was augmented as a result of oxidative stress. Reduction of mitochondrial copper by methanobactin significantly reduced mitochondrial impairment and ameliorated liver damage. CONCLUSIONS: A high-calorie diet severely aggravates hepatic mitochondrial and hepatocellular damage in Wilson disease rats, causing an earlier onset of the disease and enhanced disease progression.


Assuntos
Dieta , Degeneração Hepatolenticular/patologia , Fígado/patologia , Mitocôndrias/patologia , Animais , Ácidos e Sais Biliares/biossíntese , Cobre/sangue , ATPases Transportadoras de Cobre/metabolismo , Progressão da Doença , Fígado Gorduroso/patologia , Feminino , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Degeneração Hepatolenticular/sangue , Inflamação/patologia , Lipídeos/biossíntese , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Peptídeos/farmacologia , Proteoma/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA