Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3638, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684735

RESUMO

Photonic time crystals refer to materials whose dielectric properties are periodic in time, analogous to a photonic crystal whose dielectric properties is periodic in space. Here, we theoretically investigate photonic time-crystalline behaviour initiated by optical excitation above the electronic gap of the excitonic insulator candidate Ta2NiSe5. We show that after electron photoexcitation, electron-phonon coupling leads to an unconventional squeezed phonon state, characterised by periodic oscillations of phonon fluctuations. Squeezing oscillations lead to photonic time crystalline behaviour. The key signature of the photonic time crystalline behaviour is terahertz (THz) amplification of reflectivity in a narrow frequency band. The theory is supported by experimental results on Ta2NiSe5 where photoexcitation with short pulses leads to enhanced THz reflectivity with the predicted features. We explain the key mechanism leading to THz amplification in terms of a simplified electron-phonon Hamiltonian motivated by ab-initio DFT calculations. Our theory suggests that the pumped Ta2NiSe5 is a gain medium, demonstrating that squeezed phonon noise may be used to create THz amplifiers in THz communication applications.

2.
Proc Natl Acad Sci U S A ; 120(17): e2221688120, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071679

RESUMO

The excitonic insulator is an electronically driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order. Only a few materials are currently believed to host a dominant excitonic phase, Ta2NiSe5 being the most promising. Here, we test this scenario by using an ultrashort laser pulse to quench the broken-symmetry phase of this transition metal chalcogenide. Tracking the dynamics of the material's electronic and crystal structure after light excitation reveals spectroscopic fingerprints that are compatible only with a primary order parameter of phononic nature. We rationalize our findings through state-of-the-art calculations, confirming that the structural order accounts for most of the gap opening. Our results suggest that the spontaneous symmetry breaking in Ta2NiSe5 is mostly of structural character, hampering the possibility to realize quasi-dissipationless energy transport.

4.
Nat Mater ; 21(7): 773-778, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35710630

RESUMO

Complex correlated states emerging from many-body interactions between quasiparticles (electrons, excitons and phonons) are at the core of condensed matter physics and material science. In low-dimensional materials, quantum confinement affects the electronic, and subsequently, optical properties for these correlated states. Here, by combining photoluminescence, optical reflection measurements and ab initio theoretical calculations, we demonstrate an unconventional excitonic state and its bound phonon sideband in layered silicon diphosphide (SiP2), where the bound electron-hole pair is composed of electrons confined within one-dimensional phosphorus-phosphorus chains and holes extended in two-dimensional SiP2 layers. The excitonic state and emergent phonon sideband show linear dichroism and large energy redshifts with increasing temperature. Our ab initio many-body calculations confirm that the observed phonon sideband results from the correlated interaction between excitons and optical phonons. With these results, we propose layered SiP2 as a platform for the study of excitonic physics and many-particle effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...