Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 104, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38212969

RESUMO

The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.


Assuntos
Diatomáceas , Poli-Hidroxibutiratos , Diatomáceas/genética , Diatomáceas/metabolismo , Glicerol/metabolismo , Engenharia Metabólica , Lipídeos , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
2.
Anaerobe ; 46: 96-103, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28648471

RESUMO

Hydrogen from water electrolysis is often suggested as a way of storing the excess energy from wind and solar power plants. However, unlike natural gas, hydrogen is difficult to store and distribute. One solution is to convert the hydrogen into other fuels or bulk chemicals. In this study we investigated fermentation in which homoacetogenic clostridia apply the Wood-Ljungdahl pathway to generate acetate from H2 and CO2. Acetate can be used as a bulk chemical or further transformed into biofuels. Autotrophic growth with CO2 as the sole carbon source is slow compared to heterotrophic growth, so the aim of this work was to improve continuous gas fermentation by immobilising the acetate-producing clostridia, thus preventing their wash out from the bioreactor. Two homoacetogenic bacterial strains (Acetobacterium woodii and Moorella thermoacetica) were tested for their acetate production potential, with A. woodii proving to be the better strain with maximum acetate concentration of 29.57 g l-1. Due to its stability during fermentation and good bacterial immobilisation, linen was chosen as immobilisation material for continuous fermentation. This study demonstrates the successful continuous fermentation of acetate from H2 and CO2 using A. woodii immobilised on a low-cost surface at high volumetric productivity of 1.21 ± 0.05 g acetate l-1 d-1. This has great industrial potential and future studies should focus on the scale-up of this process.


Assuntos
Acetatos/metabolismo , Acetobacterium/metabolismo , Reatores Biológicos , Fermentação , Dióxido de Carbono , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...