Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7965): 480-483, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198479

RESUMO

In the first billion years after the Big Bang, sources of ultraviolet (UV) photons are believed to have ionized intergalactic hydrogen, rendering the Universe transparent to UV radiation. Galaxies brighter than the characteristic luminosity L* (refs. 1,2) do not provide enough ionizing photons to drive this cosmic reionization. Fainter galaxies are thought to dominate the photon budget; however, they are surrounded by neutral gas that prevents the escape of the Lyman-α photons, which has been the dominant way to identify them so far. JD1 was previously identified as a triply-imaged galaxy with a magnification factor of 13 provided by the foreground cluster Abell 2744 (ref. 3), and a photometric redshift of z ≈ 10. Here we report the spectroscopic confirmation of this very low luminosity (≈0.05 L*) galaxy at z = 9.79, observed 480 Myr after the Big Bang, by means of the identification of the Lyman break and redward continuum, as well as multiple ≳4σ emission lines, with the Near-InfraRed Spectrograph (NIRSpec) and Near-InfraRed Camera (NIRCam) instruments. The combination of the James Webb Space Telescope (JWST) and gravitational lensing shows that this ultra-faint galaxy (MUV = -17.35)-with a luminosity typical of the sources responsible for cosmic reionization-has a compact (≈150 pc) and complex morphology, low stellar mass (107.19 M⊙) and subsolar (≈0.6 Z⊙) gas-phase metallicity.

2.
Nature ; 469(7329): 181-4, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21228870

RESUMO

The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z ≳ 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be ∼0.5 per cent (refs 11, 12), but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z ≳ 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z ≈ 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z ≈ 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.

3.
J Neurosci Methods ; 185(2): 325-37, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19852982

RESUMO

Computerized detection method (CDM) software programs have been extensively developed in the field of astronomy to process and analyze images from nearby bright stars to tiny galaxies at the edge of the Universe. These object-recognition algorithms have potentially broader applications, including the detection and quantification of cutaneous small sensory nerve fibers (SSNFs) found in the dermal and epidermal layers, and in the intervening basement membrane of a skin punch biopsy. Here, we report the use of astronomical software adapted as a semi-automated method to perform density measurements of SSNFs in skin-biopsies imaged by Laser Scanning Confocal Microscopy (LSCM). In the first half of the paper, we present a detailed description of how the CDM is applied to analyze the images of skin punch biopsies. We compare the CDM results to the visual classification results in the second half of the paper. Abbreviations used in the paper, description of each astronomical tools, and their basic settings and how-tos are described in the appendices. Comparison between the normalized CDM and the visual classification results on identical images demonstrates that the two density measurements are comparable. The CDM therefore can be used - at a relatively low cost - as a quick (a few hours for entire processing of a single biopsy with 8-10 scans) and reliable (high-repeatability with minimum user-dependence) method to determine the densities of SSNFs.


Assuntos
Membrana Basal/citologia , Interpretação de Imagem Assistida por Computador/métodos , Fibras Nervosas , Processamento de Sinais Assistido por Computador , Pele/citologia , Pele/inervação , Biópsia/métodos , Estudos de Coortes , Humanos , Microscopia Confocal/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...