Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 331, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674946

RESUMO

Microalgae of the genus Chlorella vulgaris are candidates for the production of lipids for biofuel production. Besides that, Chlorella vulgaris is marketed as protein and vitamin rich food additive. Its potential as a novel expression system for recombinant proteins inspired us to study its asparagine-linked oligosaccharides (N-glycans) by mass spectrometry, chromatography and gas chromatography. Oligomannosidic N-glycans with up to nine mannoses were the structures found in culture collection strains as well as several commercial products. These glycans co-eluted with plant N-glycans in the highly shape selective porous graphitic carbon chromatography. Thus, Chlorella vulgaris generates oligomannosidic N-glycans of the structural type known from land plants and animals. In fact, Man5 (Man5GlcNAc2) served as substrate for GlcNAc-transferase I and a trace of an endogenous structure with terminal GlcNAc was seen. The unusual more linear Man5 structure recently found on glycoproteins of Chlamydomonas reinhardtii occurred - if at all - in traces only. Notably, a majority of the oligomannosidic glycans was multiply O-methylated with 3-O-methyl and 3,6-di-O-methyl mannoses at the non-reducing termini. This modification has so far been neither found on plant nor vertebrate N-glycans. It's possible immunogenicity raises concerns as to the use of C. vulgaris for production of pharmaceutical glycoproteins.


Assuntos
Asparagina/química , Chlorella vulgaris/química , Oligossacarídeos/análise , Polissacarídeos/química , Cromatografia Gasosa , Cromatografia Líquida , Espectrometria de Massas
2.
Circ Res ; 124(2): 243-255, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30582450

RESUMO

RATIONALE: Endothelial colony forming cells (ECFCs) or late blood outgrowth endothelial cells can be isolated from human cord or peripheral blood, display properties of endothelial progenitors, home into ischemic tissues and support neovascularization in ischemic disease models. OBJECTIVE: To assess the functions of CYTL1 (cytokine-like 1), a factor we found preferentially produced by ECFCs, in regard of vessel formation. METHODS AND RESULTS: We show by transcriptomic analysis that ECFCs are distinguished from endothelial cells of the vessel wall by production of high amounts of CYTL1. Modulation of expression demonstrates that the factor confers increased angiogenic sprouting capabilities to ECFCs and can also trigger sprouting of mature endothelial cells. The data further display that CYTL1 can be induced by hypoxia and that it functions largely independent of VEGF-A (vascular endothelial growth factor-A). By recombinant production of CYTL1 we confirm that the peptide is indeed a strong proangiogenic factor and induces sprouting in cellular assays and functional vessel formation in animal models comparable to VEGF-A. Mass spectroscopy corroborates that CYTL1 is specifically O-glycosylated on 2 neighboring threonines in the C-terminal part and this modification is important for its proangiogenic bioactivity. Further analyses show that the factor does not upregulate proinflammatory genes and strongly induces several metallothionein genes encoding anti-inflammatory and antiapoptotic proteins. CONCLUSIONS: We conclude that CYTL1 can mediate proangiogenic functions ascribed to endothelial progenitors such as ECFCs in vivo and may be a candidate to support vessel formation and tissue regeneration in ischemic pathologies.


Assuntos
Proteínas Angiogênicas/metabolismo , Comunicação Autócrina , Proteínas Sanguíneas/metabolismo , Neovascularização da Córnea , Citocinas/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina , Proteínas Angiogênicas/genética , Animais , Proteínas Sanguíneas/genética , Hipóxia Celular , Citocinas/genética , Modelos Animais de Doenças , Feminino , Glicosilação , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Via Secretória , Transdução de Sinais , Esferoides Celulares , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Front Microbiol ; 9: 2008, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210478

RESUMO

The cell surface of the oral pathogen Tannerella forsythia is heavily glycosylated with a unique, complex decasaccharide that is O-glycosidically linked to the bacterium's abundant surface (S-) layer, as well as other proteins. The S-layer glycoproteins are virulence factors of T. forsythia and there is evidence that protein O-glycosylation underpins the bacterium's pathogenicity. To elucidate the protein O-glycosylation pathway, genes suspected of encoding pathway components were first identified in the genome sequence of the ATCC 43037 type strain, revealing a 27-kb gene cluster that was shown to be polycistronic. Using a gene deletion approach targeted at predicted glycosyltransferases (Gtfs) and methyltransferases encoded in this gene cluster, in combination with mass spectrometry of the protein-released O-glycans, we show that the gene cluster encodes the species-specific part of the T. forsythia ATCC 43037 decasaccharide and that this is assembled step-wise on a pentasaccharide core. The core was previously proposed to be conserved within the Bacteroidetes phylum, to which T. forsythia is affiliated, and its biosynthesis is encoded elsewhere on the bacterial genome. Next, to assess the prevalence of protein O-glycosylation among Tannerella sp., the publicly available genome sequences of six T. forsythia strains were compared, revealing gene clusters of similar size and organization as found in the ATCC 43037 type strain. The corresponding region in the genome of a periodontal health-associated Tannerella isolate showed a different gene composition lacking most of the genes commonly found in the pathogenic strains. Finally, we investigated whether differential cell surface glycosylation impacts T. forsythia's overall immunogenicity. Release of proinflammatory cytokines by dendritic cells (DCs) upon stimulation with defined Gtf-deficient mutants of the type strain was measured and their T cell-priming potential post-stimulation was explored. This revealed that the O-glycan is pivotal to modulating DC effector functions, with the T. forsythia-specific glycan portion suppressing and the pentasaccharide core activating a Th17 response. We conclude that complex protein O-glycosylation is a hallmark of pathogenic T. forsythia strains and propose it as a valuable target for the design of novel antimicrobials against periodontitis.

4.
Glycobiology ; 27(6): 555-567, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334934

RESUMO

The occurrence of nonulosonic acids in bacteria is wide-spread and linked to pathogenicity. However, the knowledge of cognate nonulosonic acid transferases is scarce. In the periodontopathogen Tannerella forsythia, several proposed virulence factors carry strain-specifically either a pseudaminic or a legionaminic acid derivative as terminal sugar on an otherwise structurally identical, protein-bound oligosaccharide. This study aims to shed light on the transfer of either nonulosonic acid derivative on a proximal N-acetylmannosaminuronic acid residue within the O-glycan structure, exemplified with the bacterium's abundant S-layer glycoproteins. Bioinformatic analyses provided the candidate genes Tanf_01245 (strain ATCC 43037) and TFUB4_00887 (strain UB4), encoding a putative pseudaminic and a legionaminic acid derivative transferase, respectively. These transferases have identical C-termini and contain motifs typical of glycosyltransferases (DXD) and bacterial sialyltransferases (D/E-D/E-G and HP). They share homology to type B glycosyltransferases and TagB, an enzyme catalyzing glycerol transfer to an N-acetylmannosamine residue in teichoic acid biosynthesis. Analysis of a cellular pool of nucleotide-activated sugars confirmed the presence of the CMP-activated nonulosonic acid derivatives, which are most likely serving as substrates for the corresponding transferase. Single gene knock-out mutants targeted at either transferase were analyzed for S-layer O-glycan composition by ESI-MS, confirming the loss of the nonulosonic acid derivative. Cross-complementation of the mutants with the nonnative nonulosonic acid transferase was not successful indicating high stringency of the enzymes. This study identified plausible candidates for a pseudaminic and a legionaminic acid derivative transferase; these may serve as valuable tools for engineering of novel sialoglycoconjugates.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Tannerella forsythia/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicosilação , Mutação , Homologia de Sequência de Aminoácidos , Ácidos Siálicos/química , Sialiltransferases/química , Sialiltransferases/genética
5.
Glycobiology ; 27(4): 342-357, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986835

RESUMO

Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a gene locus for the synthesis of pseudaminic acid (Pse) in the type strain ATCC 43037 while strains FDC 92A2 and UB4 possess a locus for the synthesis of legionaminic acid (Leg) instead. In contrast to the NulO in ATCC 43037, which has been previously identified as a Pse derivative (5-N-acetimidoyl-7-N-glyceroyl-3,5,7,9-tetradeoxy-l-glycero-l-manno-NulO), glycan analysis of strain UB4 performed in this study indicated a 350-Da, possibly N-glycolyl Leg (3,5,7,9-tetradeoxy-d-glycero-d-galacto-NulO) derivative with unknown C5,7 N-acyl moieties. We have expressed, purified and characterized enzymes of both NulO pathways to confirm these genes' functions. Using capillary electrophoresis (CE), CE-mass spectrometry and NMR spectroscopy, our studies revealed that Pse biosynthesis in ATCC 43037 essentially follows the UDP-sugar route described in Helicobacter pylori, while the pathway in strain FDC 92A2 corresponds to Leg biosynthesis in Campylobacter jejuni involving GDP-sugar intermediates. To demonstrate that the NulO biosynthesis enzymes are functional in vivo, we created knockout mutants resulting in glycans lacking the respective NulO. Compared to the wild-type strains, the mutants exhibited significantly reduced biofilm formation on mucin-coated surfaces, suggestive of their involvement in host-pathogen interactions or host survival. This study contributes to understanding possible biological roles of bacterial NulOs.


Assuntos
Vias Biossintéticas/genética , Proteínas de Membrana/genética , Tannerella forsythia/genética , Genoma Bacteriano/genética , Glicosilação , Interações Hospedeiro-Patógeno/genética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Ácidos Siálicos/biossíntese , Açúcares Ácidos/metabolismo , Tannerella forsythia/enzimologia , Tannerella forsythia/patogenicidade
6.
PLoS One ; 11(9): e0162983, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656878

RESUMO

The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.

7.
Anal Biochem ; 514: 24-31, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27640150

RESUMO

Analysis of the monosaccharides of complex carbohydrates is often performed by liquid chromatography with fluorescence detection. Unfortunately, methylated sugars, unusual amino- or deoxysugars and incomplete hydrolysis can lead to erroneous assignments of peaks. Here, we demonstrate that a volatile buffer system is suitable for the separation of anthranilic acid labeled sugars. It allows off-line examination of peaks by electrospray mass spectrometry. Approaches towards on-line mass spectrometric detection using reversed-phase or porous graphitic carbon columns fell short of achieving sufficient separation of the relevant isobaric sugars. Adequate chromatographic performance for isomeric sugars was achieved with reversed-phase chromatography of "hyper"-methylated anthranilic acid-labeled monosaccharides. Deuteromethyl iodide facilitates the discovery of naturally methylated sugars and identification of their parent monosaccharide as demonstrated with N-glycans of the snail Achatina fulica, where two thirds of the galactoses and a quarter of the mannoses were methylated.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Monossacarídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , ortoaminobenzoatos/química , Carboidratos/análise , Carboidratos/química , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia de Fase Reversa/métodos , Fluorescência , Metilação , Monossacarídeos/química , Sistemas On-Line , Solventes/química , Espectrometria de Massas em Tandem/métodos
8.
Glycoconj J ; 33(3): 387-97, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26059692

RESUMO

Neuropilins are involved in angiogenesis and neuronal development. The membrane proximal domain of neuropilin-1, called c or MAM domain based on its sequence conservation, has been implicated in neuropilin oligomerization required for its function. The c/MAM domain of human neuropilin-1 has been recombinantly expressed to allow for investigation of its propensity to engage in molecular interactions with other protein or carbohydrate components on a cell surface. We found that the c/MAM domain was heavily O-glycosylated with up to 24 monosaccharide units in the form of disialylated core 1 and core 2 O-glycans. Attachment sites were identified on the chymotryptic c/MAM peptide ETGATEKPTVIDSTIQSEFPTY by electron-transfer dissociation mass spectrometry (ETD-MS/MS). For highly glycosylated species consisting of carbohydrate to about 50 %, useful results could only be obtained upon partial desialylation. ETD-MS/MS revealed a hierarchical order of the initial O-GalNAc addition to the four different glycosylation sites. These findings enable future functional studies about the contribution of the described glycosylations in neuropilin-1 oligomerization and the binding to partner proteins as VEGF or galectin-1.As a spin-off result the sialidase from Clostridium perfringens turned out to discriminate between galactose- and N-acetylgalactosamine-linked sialic acid.


Assuntos
Neuropilina-1/química , Processamento de Proteína Pós-Traducional , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Glicosilação , Células HEK293 , Humanos , Neuropilina-1/metabolismo , Domínios Proteicos
9.
Methods Mol Biol ; 1321: 427-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082239

RESUMO

The combination of porous graphitized carbon (PGC) liquid chromatography (LC) with mass spectrometric (MS) detection probably constitutes the most elaborate single stage analysis for isomer-specific N-glycan analysis. Here, we describe sample preparation and analysis procedures for the identification of released N-glycans using PGC-LC-ESI-MS and MS/MS.


Assuntos
Carbono/química , Polissacarídeos/química , Cromatografia Líquida/métodos , Isomerismo , Porosidade , Espectrometria de Massas em Tandem/métodos
10.
Extremophiles ; 19(2): 451-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25605538

RESUMO

The UDP-sulfoquinovose synthase Agl3 from Sulfolobus acidocaldarius converts UDP-D-glucose and sulfite to UDP-sulfoquinovose, the activated form of sulfoquinovose required for its incorporation into glycoconjugates. Based on the amino acid sequence, Agl3 belongs to the short-chain dehydrogenase/reductase enzyme superfamily, together with SQD1 from Arabidopsis thaliana, the only UDP-sulfoquinovose synthase with known crystal structure. By comparison of sequence and structure of Agl3 and SQD1, putative catalytic amino acids of Agl3 were selected for mutational analysis. The obtained data suggest for Agl3 a modified dehydratase reaction mechanism. We propose that in vitro biosynthesis of UDP-sulfoquinovose occurs through an NAD(+)-dependent oxidation/dehydration/enolization/sulfite addition process. In the absence of a sulfur donor, UDP-D-glucose is converted via UDP-4-keto-D-glucose to UDP-D-glucose-5,6-ene, the structure of which was determined by (1)H and (13)C-NMR spectroscopy. During the redox reaction the cofactor remains tightly bound to Agl3 and participates in the reaction in a concentration-dependent manner. For the first time, the rapid initial electron transfer between UDP-D-glucose and NAD(+) could be monitored in a UDP-sulfoquinovose synthase. Deuterium labeling confirmed that dehydration of UDP-D-glucose occurs only from the enol form of UDP-4-keto-glucose. The obtained functional data are compared with those from other UDP-sulfoquinovose synthases. A divergent evolution of Agl3 from S. acidocaldarius is suggested.


Assuntos
Sulfolobus/metabolismo , Uridina Difosfato Glucose/análogos & derivados , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Dados de Sequência Molecular , NAD/metabolismo , Uridina Difosfato Glucose/biossíntese , Uridina Difosfato Glucose/metabolismo
11.
MAbs ; 6(6): 1585-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484063

RESUMO

Recombinant Secretory IgA (SIgA) complexes have the potential to improve antibody-based passive immunotherapeutic approaches to combat many mucosal pathogens. In this report, we describe the expression, purification and characterization of a human SIgA format of the broadly neutralizing anti-HIV monoclonal antibody (mAb) 2G12, using both transgenic tobacco plants and transient expression in Nicotiana benthamiana as expression hosts (P2G12 SIgA). The resulting heterodecameric complexes accumulated in intracellular compartments in leaf tissue, including the vacuole. SIgA complexes could not be detected in the apoplast. Maximum yields of antibody were 15.2 µg/g leaf fresh mass (LFM) in transgenic tobacco and 25 µg/g LFM after transient expression, and assembly of SIgA complexes was superior in transgenic tobacco. Protein L purified antibody specifically bound HIV gp140 and neutralised tier 2 and tier 3 HIV isolates. Glycoanalysis revealed predominantly high mannose structures present on most N-glycosylation sites, with limited evidence for complex glycosylation or processing to paucimannosidic forms. O-glycan structures were not identified. Functionally, P2G12 SIgA, but not IgG, effectively aggregated HIV virions. Binding of P2G12 SIgA was observed to CD209 / DC-SIGN, but not to CD89 / FcalphaR on a monocyte cell line. Furthermore, P2G12 SIgA demonstrated enhanced stability in mucosal secretions in comparison to P2G12 IgG mAb.


Assuntos
Anticorpos Neutralizantes/imunologia , HIV/imunologia , Imunoglobulina A Secretora/imunologia , Proteínas Recombinantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Sítios de Ligação/imunologia , Líquidos Corporais/imunologia , Líquidos Corporais/metabolismo , Feminino , Glicosilação , HIV/efeitos dos fármacos , HIV/metabolismo , Humanos , Immunoblotting , Imunoglobulina A Secretora/genética , Imunoglobulina A Secretora/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Polissacarídeos/análise , Polissacarídeos/imunologia , Ligação Proteica/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Nicotiana/genética , Nicotiana/metabolismo , Vagina/imunologia , Vagina/metabolismo , Vírion/efeitos dos fármacos , Vírion/imunologia , Vírion/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
12.
Plant Physiol ; 166(4): 1839-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25355867

RESUMO

Plants are increasingly being used as an expression system for complex recombinant proteins. However, our limited knowledge of the intrinsic factors that act along the secretory pathway, which may compromise product integrity, renders process design difficult in some cases. Here, we pursued the recombinant expression of the human protease inhibitor α1-antitrypsin (A1AT) in Nicotiana benthamiana. This serum protein undergoes intensive posttranslational modifications. Unusually high levels of recombinant A1AT were expressed in leaves (up to 6 mg g(-1) of leaf material) in two forms: full-length A1AT located in the endoplasmic reticulum displaying inhibitory activity, and secreted A1AT processed in the reactive center loop, thus rendering it unable to interact with target proteinases. We found that the terminal protein processing is most likely a consequence of the intrinsic function of A1AT (i.e. its interaction with proteases [most likely serine proteases] along the secretory pathway). Secreted A1AT carried vacuolar-type paucimannosidic N-glycans generated by the activity of hexosaminidases located in the apoplast/plasma membrane. Notwithstanding, an intensive glycoengineering approach led to secreted A1AT carrying sialylated N-glycan structures largely resembling its serum-derived counterpart. In summary, we elucidate unique insights in plant glycosylation processes and show important aspects of postendoplasmic reticulum protein processing in plants.


Assuntos
Nicotiana/metabolismo , Processamento de Proteína Pós-Traducional , Inibidores de Serina Proteinase/metabolismo , alfa 1-Antitripsina/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Expressão Gênica , Glicosilação , Humanos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Proteólise , Proteínas Recombinantes , Via Secretória , Serina Proteases/genética , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/genética , Nicotiana/genética , Vacúolos/metabolismo , alfa 1-Antitripsina/genética
13.
Glycoconj J ; 31(9): 661-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25338825

RESUMO

O-glycosylation is a widely occurring posttranslational modification of proteins. The glycosylation status of a specific site may influence the location, activity and function of a protein. The initiating enzyme of mucin-type O-glycosylation is UDP-GalNAc:polypeptide GalNAc transferase (ppGalNAcT; EC 2.4.1.41). Using electron-transfer dissociation mass spectrometry, ppGalNAcT from the snail Biomphalaria glabrata was characterized regarding its ability to glycosylate threonine and serine residues in different peptide sequence environments. The preferences of the snail enzyme for flanking amino acids of the potential glycosylation site were very similar to vertebrate and insect members of the family. Acceptor sites with adjacent proline residues were highly preferred, while other residues caused less pronounced effects. No specific O-glycosylation consensus sequence was found. The results obtained from synthetic peptides were in good correlation with the observed glycosylation patterns of native peptides and with the order of attachment in a multi-glycosylated peptide. The snail enzyme clearly preferred threonine over serine in the in vitro assays. No significant differences of transfer speed or efficiency could be detected using a mutant of the enzyme lacking the lectin domain. This is the first characterisation of the substrate specificity of a member of the ppGalNAcT family from mollusc origin.


Assuntos
Biomphalaria/química , N-Acetilgalactosaminiltransferases/química , Peptídeos/química , Serina/química , Treonina/química , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Biomphalaria/enzimologia , Galactose/química , Galactose/metabolismo , Expressão Gênica , Glucose/química , Glucose/metabolismo , Glicosilação , Cinética , Dados de Sequência Molecular , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Peptídeos/síntese química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Células Sf9 , Spodoptera , Especificidade por Substrato , Treonina/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
14.
J Proteomics ; 108: 258-68, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24907489

RESUMO

Bovine fetuin often finds use as a test model for analytical methods, but the exact occupancy of its O-glycosylation sites has not yet been determined. An obstacle for a closer inspection of the five or six O-glycosylation sites is the close spacing of several sites on the same tryptic peptide. The advent of ion-trap instruments with electron-transfer dissociation (ETD) capability and - for the type of instrument - high resolution prompted us to probe this technology for the investigation of the intricate posttranslational modifications O-glycosylation and phosphorylation. Much information could be obtained by direct-infusion ETD analysis of the fully sialylated tryptic 61-residue peptide harboring 8 hydroxyl amino acids of which four were indeed found to be, if only partially, glycosylated. The middle-down approach allowed recognizing an order of action of O-GalNAc transferase(s). No such hierarchy could be observed for phosphorylation. ETD fragmentation on an ion trap thus allowed in-depth analysis of a large, multiply O-glycosylated peptide, however, only by data accumulation over several minutes by direct infusion of a prefractionated sample. O-glycosylation and phosphorylation sites re-defined and their occupancy including that of N-glycans were defined by this study. BIOLOGICAL SIGNIFICANCE: O-glycosylation of natural or recombinant proteins poses a challenge because of the lack of unambiguous consensus sites, the agglomeration of several O-glycans in close proximity and the lack of efficient O-glycosidases. Even bovine fetuin, a frequently used test glycoprotein for glycosylation analysis, has hitherto not been fully characterized in terms of site occupancy. This gap shall hereby be closed by application of electron-transfer dissociation mass spectroscopy.


Assuntos
Fetuínas/química , Espectrometria de Massas , Peptídeos/química , Processamento de Proteína Pós-Traducional , Animais , Bovinos , Fetuínas/metabolismo , Glicosilação , Peptídeos/metabolismo , Fosforilação
15.
J Biotechnol ; 182-183: 97-103, 2014 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-24794799

RESUMO

In order to preserve the in vivo metabolite levels of cells, a quenching protocol must be quickly executed to avoid degradation of labile metabolites either chemically or biologically. In the case of mammalian cell cultures cultivated in complex media, a wash step previous to quenching is necessary to avoid contamination of the cell pellet with extracellular metabolites, which could distort the real intracellular concentration of metabolites. This is typically achieved either by one or multiple centrifugation/wash steps which delay the time until quenching (even harsh centrifugation requires several minutes for processing until the cells are quenched) or filtration. In this article, we describe and evaluate a two-step optimized protocol based on fast filtration by use of a vacuum pump for quenching and subsequent extraction of intracellular metabolites from CHO (Chinese hamster ovary) suspension cells, which uses commercially available components. The method allows transfer of washed cells into liquid nitrogen within 10-15s of sampling and recovers the entire extraction solution volume. It also has the advantage to remove residual filter filaments in the final sample, thus preventing damage to separation columns during subsequent MS analysis. Relative to other methods currently used in the literature, the resulting energy charge of intracellular adenosine nucleotides was increased to 0.94 compared to 0.90 with cold PBS quenching or 0.82 with cold methanol/AMBIC quenching.


Assuntos
Filtração/métodos , Metabolômica/métodos , Seringas , Animais , Arginina/análise , Células CHO , Cricetinae , Cricetulus , Filtração/instrumentação , Espaço Intracelular/química , Metabolômica/instrumentação , Triptofano/análise
16.
Sci Rep ; 3: 3279, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24252857

RESUMO

The yeast Pichia pastoris is a common host for the recombinant production of biopharmaceuticals, capable of performing posttranslational modifications like glycosylation of secreted proteins. However, the activity of the OCH1 encoded α-1,6-mannosyltransferase triggers hypermannosylation of secreted proteins at great heterogeneity, considerably hampering downstream processing and reproducibility. Horseradish peroxidases are versatile enzymes with applications in diagnostics, bioremediation and cancer treatment. Despite the importance of these enzymes, they are still isolated from plant at low yields with different biochemical properties. Here we show the production of homogeneous glycoprotein species of recombinant horseradish peroxidase by using a P. pastoris platform strain in which OCH1 was deleted. This och1 knockout strain showed a growth impaired phenotype and considerable rearrangements of cell wall components, but nevertheless secreted more homogeneously glycosylated protein carrying mainly Man8 instead of Man10 N-glycans as a dominant core glycan structure at a volumetric productivity of 70% of the wildtype strain.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Glicoproteínas/metabolismo , Manosiltransferases/genética , Pichia/genética , Pichia/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Divisão Celular/genética , Cromatografia Líquida , Ativação Enzimática , Ordem dos Genes , Marcação de Genes , Glicoproteínas/química , Lectinas de Ligação a Manose/metabolismo , Manosiltransferases/química , Manosiltransferases/isolamento & purificação , Manosiltransferases/metabolismo , Espectrometria de Massas , Fenótipo , Pichia/crescimento & desenvolvimento , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...