Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(20): 9237-9244, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38722713

RESUMO

Mixed-donor ligands, such as those containing a combination of O/N or O/S, have been studied extensively for the selective extraction of trivalent actinides, especially Am3+ and Cm3+, from lanthanides during the recycling of used nuclear fuel. Oxygen/sulfur donor ligand combinations also result from the hydrolytic and/or radiolytic degradation of dithiophosphates, such as the Cyanex class of extractants, which are initially converted to monothiophosphates. To understand potential differences between the binding of such degraded ligands to Nd3+ and Am3+, the monothiophosphate complexes [M(OPS(OEt)2)5(H2O)2]2- (M3+ = Nd3+, Am3+) were prepared and characterized by single-crystal X-ray diffraction and optical spectroscopy and studied as a function of pressure up to ca. 14 GPa using diamond-anvil techniques. Although Nd3+ and Am3+ have nearly identical eight-coordinated ionic radii, these structures reveal that while the M-O bond distances in these complexes are almost equal, the M-S distances are statistically different. Moreover, for [Nd(OPS(OEt)2)5(H2O)2]2-, the hypersensitive 4I9/2 → 4G5/2 transition shifts as a function of pressure by -11 cm-1/GPa. Whereas for [Am(OPS(OEt)2)5(H2O)2]2-, the 7F0 → 7F6 transition shows a slightly stronger pressure dependence with a shift of -13 cm-1/GPa and also exhibits broadening of the 5f → 5f transitions at high pressures. These data likely indicate an increased involvement of the 5f orbitals in bonding with Am3+ relative to that of Nd3+ in these complexes.

3.
J Phys Chem A ; 128(3): 590-598, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215218

RESUMO

Despite the availability of transuranic elements increasing in recent years, our understanding of their most basic and inherent radiation chemistry is limited and yet essential for the accurate interpretation of their physical and chemical properties. Here, we explore the transient interactions between trivalent californium ions (Cf3+) and select inorganic radicals arising from the radiolytic decomposition of common anions and functional group constituents, specifically the dichlorine (Cl2•-) and sulfate (SO4•-) radical anions. Chemical kinetics, as measured using integrated electron pulse radiolysis and transient absorption spectroscopy techniques, are presented for the reactions of these two oxidizing radicals with Cf3+ ions. The derived and ionic strength-corrected second-order rate coefficients (k) for these radiation-induced processes are k(Cf3+ + Cl2•-) = (8.28 ± 0.61) × 105 M-1 s-1 and k(Cf3+ + SO4•-) = (9.50 ± 0.43) × 108 M-1 s-1 under ambient temperature conditions (22 ± 1 °C).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA