Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Pharm Fr ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657857

RESUMO

Numerous studies suggest that blood-brain barrier (BBB) dysfunction may contribute to the progression of Alzheimer's disease (AD). Clinically available neuroimaging methods are needed for quantitative "scoring" of BBB permeability in AD patients. [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS), which can be easily obtained from simple chemical reduction of commercial [18F]2-fluoro-2-deoxy-glucose ([18F]FDG), was investigated as a small-molecule marker of BBB permeability, in a pre-clinical model of AD using in vivo PET imaging. Chemical reduction of [18F]FDG to [18F]FDS was obtained with a 100% conversion yield. Dynamic PET acquisitions were performed in the APP/PS1 rat model of AD (TgF344-AD, n=3) compared with age-matched littermates (WT, n=4). The brain uptake of [18F]FDS was determined in selected brain regions, delineated from a coregistered rat brain template. The brain uptake of [18F]FDS in the brain regions of AD rats versus WT rats was compared using a 2-way ANOVA. The uptake of [18F]FDS was significantly higher in the whole brain of AD rats, as compared with WT rats (P<0.001), suggesting increased BBB permeability. Enhanced brain uptake of [18F]FDS in AD rats was significantly different across brain regions (P<0.001). Minimum difference was observed in the amygdala (+89.0±7.6%, P<0.001) and maximum difference was observed in the midbrain (+177.8±29.2%, P<0.001). [18F]FDS, initially proposed as radio-pharmaceutical to estimate renal filtration using PET imaging, can be repurposed for non-invasive and quantitative determination of BBB permeability in vivo. Making the best with the quantitative properties of PET imaging, it was possible to estimate the extent of enhanced BBB permeability in a rat model of AD.

2.
J Cereb Blood Flow Metab ; : 271678X241236755, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441006

RESUMO

The quantitative relationship between the disruption of the blood-brain barrier (BBB) and the recruitment of glial cells was explored in a mouse model of endotoxemia. [18F]2-Fluoro-2-deoxy-sorbitol ([18F]FDS) PET imaging was used as a paracellular marker for quantitative monitoring of BBB permeability after i.v injection of increasing doses of lipopolysaccharide (LPS) or vehicle (saline, n = 5). The brain distribution of [18F]FDS (VT, mL.cm-3) was estimated using kinetic modeling. LPS dose-dependently increased the brain VT of [18F]FDS after injection of LPS 4 mg/kg (5.2 ± 2.4-fold, n = 4, p < 0.01) or 5 mg/kg (9.0 ± 9.1-fold, n = 4, p < 0.01) but not 3 mg/kg (p > 0.05, n = 7). In 12 individuals belonging to the different groups, changes in BBB permeability were compared with expression of markers of astrocyte (GFAP) and microglial cell (CD11b) using ex vivo immunohistochemistry. Increased expression of CD11b and GFAP expression was observed in mice injected with 3 mg/kg of LPS, which did not increase with higher LPS doses. Quantitative [18F]FDS PET imaging can capture different levels of BBB permeability in vivo. A biphasic effect was observed with the lowest dose of LPS that triggered neuroinflammation without disruptive changes in BBB permeability, and higher LPS doses that increased BBB permeability without additional recruitment of glial cells.

3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293329

RESUMO

Diffuse intrinsic pontine gliomas (DIPG), the first cause of cerebral pediatric cancer death, will greatly benefit from specific and non-invasive biomarkers for patient follow-up and monitoring of drug efficacy. Since biopsies are challenging for brain tumors, molecular imaging may be a technique of choice to target and follow tumor evolution. So far, MR remains the imaging technique of reference for DIPG, although it often fails to define the extent of tumors, an essential parameter for therapeutic efficacy assessment. Thanks to its high sensitivity, positron emission tomography (PET) offers a unique way to target specific biomarkers in vivo. We demonstrated in a patient-derived orthotopic xenograft (PDOX) model in the rat that the translocator protein of 18 kDa (TSPO) may be a promising biomarker for monitoring DIPG tumors. We studied the distribution of 18F-DPA-714, a TSPO radioligand, in rats inoculated with HSJD-DIPG-007 cells. The primary DIPG human cell line HSJD-DIPG-007 highly represents this pediatric tumor, displaying the most prevalent DIPG mutations, H3F3A (K27M) and ACVR1 (R206H). Kinetic modeling and parametric imaging using the brain 18F-DPA-714 PET data enabled specific delineation of the DIPG tumor area, which is crucial for radiotherapy dose management.


Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Criança , Animais , Humanos , Ratos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , Linhagem Celular Tumoral , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/genética , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte , Modelos Animais de Doenças , Biomarcadores , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de GABA-A
4.
Cancers (Basel) ; 14(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35804911

RESUMO

Glioblastoma is the most common primary brain tumor, highly aggressive by being proliferative, neovascularized and invasive, heavily infiltrated by immunosuppressive glioma-associated myeloid cells (GAMs), including glioma-associated microglia/macrophages (GAMM) and myeloid-derived suppressor cells (MDSCs). Quantifying GAMs by molecular imaging could support patient selection for GAMs-targeting immunotherapy, drug target engagement and further assessment of clinical response. Magnetic resonance imaging (MRI) and amino acid positron emission tomography (PET) are clinically established imaging methods informing on tumor size, localization and secondary phenomena but remain quite limited in defining tumor heterogeneity, a key feature of glioma resistance mechanisms. The combination of different imaging modalities improved the in vivo characterization of the tumor mass by defining functionally distinct tissues probably linked to tumor regression, progression and infiltration. In-depth image validation on tracer specificity, biological function and quantification is critical for clinical decision making. The current review provides a comprehensive overview of the relevant experimental and clinical data concerning the spatiotemporal relationship between tumor cells and GAMs using PET imaging, with a special interest in the combination of amino acid and translocator protein (TSPO) PET imaging to define heterogeneity and as therapy readouts.

5.
Front Neurosci ; 16: 835577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281502

RESUMO

Translational methods are needed to monitor the impact of the Alzheimer's disease (AD) and therapies on brain function in animal models and patients. The formation of amyloid plaques was investigated using [18F]florbetapir autoradiography in a mouse model of AD consisting in unilateral intracerebroventricular (i.c.v) injection of amyloid peptide Aß25-35. Then, an optimized positron emission tomography (PET) imaging protocol using [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) was performed to estimate brain glucose metabolism: [18F]FDG was injected in awake animals to allow for 40 min brain uptake in freely moving mice. Anesthesia was then induced for 30 min PET acquisition to capture the slow and poorly reversible brain uptake of [18F]FDG. Impact of donepezil (0.25 mg/kg daily, 7 days, orally) on brain function was investigated in AD mice (n = 6 mice/group). Formation of amyloid plaques could not be detected using autoradiography. Compared with sham controls (injection of scramble peptide), significant decrease in [18F]FDG uptake was observed in the AD group in the subcortical volume of the ipsilateral hemisphere. Donepezil restored normal glucose metabolism by selectively increasing glucose metabolism in the affected subcortical volume but not in other brain regions. In mice, [18F]FDG PET imaging can be optimized to monitor impaired brain function associated with i.c.v injection of Aß25-35, even in the absence of detectable amyloid plaque. This model recapitulates the regional decrease in [18F]FDG uptake observed in AD patients. [18F]FDG PET imaging can be straightforwardly transferred to AD patients and may aid the development of certain therapies designed to restore the altered brain function in AD.

6.
J Nucl Med ; 63(9): 1386-1393, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35115369

RESUMO

Glioma-associated microglia and macrophages (GAMMs) are key players in creating an immunosuppressive microenvironment. They can be efficiently targeted by inhibiting the colony-stimulating factor 1 receptor (CSF-1R). We applied noninvasive PET/CT and PET/MRI using 18F-fluoroethyltyrosine (18F-FET) (amino acid metabolism) and N,N-diethyl-2-[4-(2-18F-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide (18F-DPA-714) (translocator protein) to understand the role of GAMMs in glioma initiation, monitor in vivo therapy-induced GAMM depletion, and observe GAMM repopulation after drug withdrawal. Methods: C57BL/6 mice (n = 44) orthotopically implanted with syngeneic mouse GL261 glioma cells were treated with different regimens using the CSF-1R inhibitor PLX5622 (6-fluoro-N-((5-fluoro-2-methoxypyridin-3-yl)methyl)-5-((5-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)pyridin-2-amine) or vehicle, establishing a preconditioning model and a repopulation model, respectively. The mice underwent longitudinal PET/CT and PET/MRI. Results: The preconditioning model indicated similar tumor growth based on MRI (44.5% ± 24.8%), 18F-FET PET (18.3% ± 11.3%), and 18F-DPA-714 PET (16% ± 19.04%) volume dynamics in all groups, suggesting that GAMMs are not involved in glioma initiation. The repopulation model showed significantly reduced 18F-DPA-714 uptake (-45.6% ± 18.4%), significantly reduced GAMM infiltration even after repopulation, and a significantly decreased tumor volume (-54.29% ± 8.6%) with repopulation as measured by MRI, supported by a significant reduction in 18F-FET uptake (-50.2% ± 5.3%). Conclusion: 18F-FET and 18F-DPA-714 PET/MRI allow noninvasive assessment of glioma growth under various regimens of CSF-1R therapy. CSF-1R-mediated modulation of GAMMs may be of high interest as therapy or cotherapy against glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Acetamidas/metabolismo , Aminas/metabolismo , Aminoácidos/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Radioisótopos de Flúor/metabolismo , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo
7.
Pharmaceutics ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834167

RESUMO

Focused ultrasound in combination with microbubbles (FUS) provides an effective means to locally enhance the delivery of therapeutics to the brain. Translational and quantitative imaging techniques are needed to noninvasively monitor and optimize the impact of FUS on blood-brain barrier (BBB) permeability in vivo. Positron-emission tomography (PET) imaging using [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS) was evaluated as a small-molecule (paracellular) marker of blood-brain barrier (BBB) integrity. [18F]FDS was straightforwardly produced from chemical reduction of commercial [18F]2-deoxy-2-fluoro-D-glucose. [18F]FDS and the invasive BBB integrity marker Evan's blue (EB) were i.v. injected in mice after an optimized FUS protocol designed to generate controlled hemispheric BBB disruption. Quantitative determination of the impact of FUS on the BBB permeability was determined using kinetic modeling. A 2.2 ± 0.5-fold higher PET signal (n = 5; p < 0.01) was obtained in the sonicated hemisphere and colocalized with EB staining observed post mortem. FUS significantly increased the blood-to-brain distribution of [18F]FDS by 2.4 ± 0.8-fold (VT; p < 0.01). Low variability (=10.1%) of VT values in the sonicated hemisphere suggests reproducibility of the estimation of BBB permeability and FUS method. [18F]FDS PET provides a readily available, sensitive and reproducible marker of BBB permeability to noninvasively monitor the extent of BBB disruption induced by FUS in vivo.

8.
Eur J Nucl Med Mol Imaging ; 49(1): 174-185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33721063

RESUMO

Gliomas are highly dynamic and heterogeneous tumours of the central nervous system (CNS). They constitute the most common neoplasm of the CNS and the second most common cause of death from intracranial disease after stroke. The advances in detailing the genetic profile of paediatric and adult gliomas along with the progress in MRI and PET multimodal molecular imaging technologies have greatly improved prognostic stratification of patients with glioma and informed on treatment decisions. Amino acid PET has already gained broad clinical application in the study of gliomas. PET imaging targeting the translocator protein (TSPO) has recently been applied to decipher the heterogeneity and dynamics of the tumour microenvironment (TME) and its various cellular components especially in view of targeted immune therapies with the goal to delineate pro- and anti-glioma immune cell modulation. The current review provides a comprehensive overview on the historical developments of TSPO PET for gliomas and summarizes the most relevant experimental and clinical data with regard to the assessment and quantification of various cellular components with the TME of gliomas by in vivo TSPO PET imaging.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Glioma/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons , Receptores de GABA/genética , Microambiente Tumoral
9.
Theranostics ; 11(5): 2020-2033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500706

RESUMO

Rationale: The heterogeneous nature of gliomas makes the development and application of novel treatments challenging. In particular, infiltrating myeloid cells play a role in tumor progression and therapy resistance. Hence, a detailed understanding of the dynamic interplay of tumor cells and immune cells in vivo is necessary. To investigate the complex interaction between tumor progression and therapy-induced changes in the myeloid immune component of the tumor microenvironment, we used a combination of [18F]FET (amino acid metabolism) and [18F]DPA-714 (TSPO, GAMMs, tumor cells, astrocytes, endothelial cells) PET/MRI together with immune-phenotyping. The aim of the study was to monitor temozolomide (TMZ) treatment response and therapy-induced changes in the inflammatory tumor microenvironment (TME). Methods: Eighteen NMRInu/nu mice orthotopically implanted with Gli36dEGFR cells underwent MRI and PET/CT scans before and after treatment with TMZ or DMSO (vehicle). Tumor-to-background (striatum) uptake ratios were calculated and areas of unique tracer uptake (FET vs. DPA) were determined using an atlas-based volumetric approach. Results: TMZ therapy significantly modified the spatial distribution and uptake of both tracers. [18F]FET uptake was significantly reduced after therapy (-53 ± 84%) accompanied by a significant decrease of tumor volume (-17 ± 6%). In contrast, a significant increase (61 ± 33%) of [18F]DPA-714 uptake was detected by TSPO imaging in specific areas of the tumor. Immunohistochemistry (IHC) validated the reduction in tumor volumes and further revealed the presence of reactive TSPO-expressing glioma-associated microglia/macrophages (GAMMs) in the TME. Conclusion: We confirm the efficiency of [18F]FET-PET for monitoring TMZ-treatment response and demonstrate that in vivo TSPO-PET performed with [18F]DPA-714 can be used to identify specific reactive areas of myeloid cell infiltration in the TME.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/patologia , Glioma/patologia , Processamento de Imagem Assistida por Computador/métodos , Temozolomida/farmacologia , Microambiente Tumoral , Animais , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Feminino , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Camundongos , Tomografia por Emissão de Pósitrons , Carga Tumoral , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Control Release ; 328: 304-312, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860928

RESUMO

Epidermal growth factor receptor (EGFR), involved in cell proliferation and migration, is overexpressed in ~50% of glioblastomas. Anti-EGFR based strategies using monoclonal antibodies (mAb) such as cetuximab (CTX) have been proposed for central nervous system (CNS) cancer therapy. However, the blood-brain barrier (BBB) drastically restricts their brain penetration which limits their efficacy for the treatment of glioblastomas. Herein, a longitudinal PET imaging study was performed to assess the relevance and the impact of focused ultrasound (FUS)-mediated BBB permeabilization on the brain exposure to the anti-EGFR mAb CTX over time. For this purpose, FUS permeabilization process with microbubbles was applied on intact BBB mouse brain before the injection of 89Zr-labeled CTX for longitudinal imaging monitoring. FUS induced a dramatic increase in mAb penetration to the brain, 2 times higher compared to the intact BBB. The transfer of 89Zr-CTX from blood to the brain was rendered significant by FUS (kuptake = 1.3 ± 0.23 min-1 with FUS versus kuptake = 0 ± 0.006 min-1 without FUS). FUS allowed significant and prolonged exposure to mAb in the brain parenchyma. This study confirms the potential of FUS as a target delivery method for mAb in CNS.


Assuntos
Barreira Hematoencefálica , Microbolhas , Animais , Encéfalo , Cetuximab , Sistemas de Liberação de Medicamentos , Cinética , Camundongos
11.
Adv Exp Med Biol ; 1225: 71-87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32030648

RESUMO

The tumour microenvironment (TME) surrounding tumour cells is a highly dynamic and heterogeneous composition of immune cells, fibroblasts, precursor cells, endothelial cells, signalling molecules and extracellular matrix (ECM) components. Due to the heterogeneity and the constant crosstalk between the TME and the tumour cells, the components of the TME are important prognostic parameters in cancer and determine the response to novel immunotherapies. To improve the characterization of the TME, novel non-invasive imaging paradigms targeting the complexity of the TME are urgently needed.The characterization of the TME by molecular imaging will (1) support early diagnosis and disease follow-up, (2) guide (stereotactic) biopsy sampling, (3) highlight the dynamic changes during disease pathogenesis in a non-invasive manner, (4) help monitor existing therapies, (5) support the development of novel TME-targeting therapies and (6) aid stratification of patients, according to the cellular composition of their tumours in correlation to their therapy response.This chapter will summarize the most recent developments and applications of molecular imaging paradigms beyond FDG for the characterization of the dynamic molecular and cellular changes in the TME.


Assuntos
Imagem Molecular , Neoplasias/terapia , Microambiente Tumoral , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos
12.
Neuro Oncol ; 22(7): 1030-1043, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32047908

RESUMO

BACKGROUND: Tumor-associated microglia and macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are potent immunosuppressors in the glioma tumor microenvironment (TME). Their infiltration is associated with tumor grade, progression, and therapy resistance. Specific tools for image-guided analysis of spatiotemporal changes in the immunosuppressive myeloid tumor compartments are missing. We aimed (i) to evaluate the role of fluorodeoxyglucose (18F)DPA-714* (translocator protein [TSPO]) PET-MRI in the assessment of the immunosuppressive TME in glioma patients, and (ii) to cross-correlate imaging findings with in-depth immunophenotyping. METHODS: To characterize the glioma TME, a mixed collective of 9 glioma patients underwent [18F]DPA-714-PET-MRI in addition to [18F]fluoro-ethyl-tyrosine (FET)-PET-MRI. Image-guided biopsy samples were immunophenotyped by multiparametric flow cytometry and immunohistochemistry. In vitro autoradiography was performed for image validation and assessment of tracer binding specificity. RESULTS: We found a strong relationship (r = 0.84, P = 0.009) between the [18F]DPA-714 uptake and the number and activation level of glioma-associated myeloid cells (GAMs). TSPO expression was mainly restricted to human leukocyte antigen D related-positive (HLA-DR+) activated GAMs, particularly to tumor-infiltrating HLA-DR+ MDSCs and TAMs. [18F]DPA-714-positive tissue volumes exceeded [18F]FET-positive volumes and showed a differential spatial distribution. CONCLUSION: [18F]DPA-714-PET may be used to non-invasively image the glioma-associated immunosuppressive TME in vivo. This imaging paradigm may also help to characterize the heterogeneity of the glioma TME with respect to the degree of myeloid cell infiltration at various disease stages. [18F]DPA-714 may also facilitate the development of new image-guided therapies targeting the myeloid-derived TME.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Radioisótopos de Flúor , Glioma/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Receptores de GABA , Estudos Retrospectivos
14.
Neuro Oncol ; 21(6): 755-764, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-30721979

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most devastating brain tumor. Despite the use of multimodal treatments, most patients relapse, often due to the highly invasive nature of gliomas. However, the detection of glioma infiltration remains challenging. The aim of this study was to assess advanced PET and MRI techniques for visualizing biological activity and infiltration of the tumor. METHODS: Using multimodality imaging, we investigated [18F]DPA-714, a radiotracer targeting the 18 kDa translocator protein (TSPO), [18F]FET PET, non-Gaussian diffusion MRI (apparent diffusion coefficient, kurtosis), and the S-index, a composite diffusion metric, to detect tumor infiltration in a human invasive glioma model. In vivo imaging findings were confirmed by autoradiography and immunofluorescence. RESULTS: Increased tumor-to-contralateral [18F]DPA-714 uptake ratios (1.49 ± 0.11) were found starting 7 weeks after glioma cell implantation. TSPO-PET allowed visualization of glioma infiltration into the contralateral hemisphere 2 weeks earlier compared with the clinically relevant biomarker for biological glioma activity [18F]FET. Diffusion-weighted imaging (DWI), in particular kurtosis, was more sensitive than standard T2-weighted MRI to detect differences between the glioma-bearing and the contralateral hemisphere at 5 weeks. Immunofluorescence data reflect in vivo findings. Interestingly, labeling for tumoral and stromal TSPO indicates a predominant expression of TSPO by tumor cells. CONCLUSION: These results suggest that advanced PET and MRI methods, such as [18F]DPA-714 and DWI, may be superior to standard imaging methods to visualize glioma growth and infiltration at an early stage.


Assuntos
Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Radioisótopos de Flúor/metabolismo , Glioma/patologia , Tomografia por Emissão de Pósitrons/métodos , Pirazóis/metabolismo , Pirimidinas/metabolismo , Receptores de GABA/metabolismo , Animais , Apoptose , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Theranostics ; 8(19): 5400-5418, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555554

RESUMO

Microglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the in vivo analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory / protective state of microglia for the development of novel PET tracers. Methods: New translational markers of the anti-inflammatory/protective activation state of microglia were selected by bioinformatic approaches and were in vitro and ex vivo validated by qPCR and immunohistochemistry in rodent and human samples. Once a viable marker was identified, a novel PET tracer was developed. This tracer was subsequently confirmed by autoradiography experiments in murine and human brain tissues. Results: Here we provide evidence that P2RY12 expression increases in murine and human microglia following exposure to anti-inflammatory stimuli, and that its expression is modulated in the reparative phase of experimental and clinical stroke. We then synthesized a novel carbon-11 labeled tracer targeting P2RY12, showing increased binding in brain sections of mice treated with IL4, and low binding to brain sections of a murine stroke model and of a stroke patient. Conclusion: This study provides new translational targets for PET tracers for the anti-inflammatory/protective activation state of microglia and shows the potential of a rationale-based approach. It therefore paves the way for the development of novel non-invasive methodologies aimed to monitor the success of therapeutic approaches in various neurological diseases.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Microglia/imunologia , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Anti-Inflamatórios/administração & dosagem , Radioisótopos de Carbono/administração & dosagem , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Interleucina-4/administração & dosagem , Camundongos , Traçadores Radioativos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Purinérgicos P2Y12/análise , Roedores , Acidente Vascular Cerebral/patologia
16.
Mol Pharm ; 14(11): 4064-4078, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28968497

RESUMO

Upregulation of the cannabinoid type 2 receptors (CB2R) unveils inflammation processes of pathological disorders, such as cancer, pain, or neurodegenerative diseases. Among others, CB2R agonist A-836339 has been labeled with carbon-11 for PET imaging of the CB2R and displayed promising results in a mouse model of Alzheimer's disease. The aim of the present work was to develop fluorinated analogs of A-836339 for labeling with fluorine-18 to design a new PET tracer for CB2R imaging. Seven fluorinated analogs of A-836339 were synthesized in two to three steps and their binding affinities and selectivities for both the human and the mouse CB2R were measured as well as their early ADME profiles. Among them, compound 2f (KihCB2R = 0.1 nM, KihCB1R/KihCB2R = 300) displayed high affinity and selectivity for CB2R but also promising lipophilicity, kinetic solubility, and membrane permeation properties and was further selected for in vitro metabolism studies. Incubation of 2f with human or rat liver microsomes followed by LC/MS analysis revealed the presence of six different metabolites mainly resulting from oxidation reactions. A tosylated precursor of 2f was synthesized in two steps and radiolabeled with fluorine-18 to afford [18F]2f in 15 ± 5% radiochemical yield and a molar activity of 110 ± 30 GBq/µmol. Autoradiographies of rat spleen and biodistribution studies in healthy rats including pretreatments with either CB2R or CB1R-specific compounds suggested that [18F]2f is a specific tracer for the CB2R in vivo. We have therefore demonstrated here that [18F]2f is a promising novel tracer for imaging CB2R in vivo using PET. Further investigation in animal models of inflammation will follow.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Animais , Humanos , Cinética , Camundongos , Ratos , Receptor CB2 de Canabinoide/metabolismo , Tiazóis/química
17.
Cancer Res ; 77(8): 1831-1841, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28137769

RESUMO

The tumor microenvironment is highly heterogeneous. For gliomas, the tumor-associated inflammatory response is pivotal to support growth and invasion. Factors of glioma growth, inflammation, and invasion, such as the translocator protein (TSPO) and matrix metalloproteinases (MMP), may serve as specific imaging biomarkers of the glioma microenvironment. In this study, noninvasive imaging by PET with [18F]DPA-714 (TSPO) and [18F]BR-351 (MMP) was used for the assessment of localization and quantification of the expression of TSPO and MMP. Imaging was performed in addition to established clinical imaging biomarker of active tumor volume ([18F]FET) in conjunction with MRI. We hypothesized that each imaging biomarker revealed distinct areas of the heterogeneous glioma tissue in a mouse model of human glioma. Tracers were found to be increased 1.4- to 1.7-fold, with [18F]FET showing the biggest volume as depicted by a thresholding-based, volumes of interest analysis. Tumor areas, which could not be detected by a single tracer and/or MRI parameter alone, were measured. Specific compartments of [18F]DPA-714 (14%) and [18F]BR-351 (11%) volumes along the tumor rim could be identified. [18F]DPA-714 (TSPO) and [18F]BR-351 (MMP) matched with histology. Glioma-associated microglia/macrophages (GAM) were identified as TSPO and MMP sources. Multitracer and multimodal molecular imaging approaches may allow us to gain important insights into glioma-associated inflammation (GAM, MMP). Moreover, this noninvasive technique enables characterization of the glioma microenvironment with respect to the disease-driving cellular compartments at the various disease stages. Cancer Res; 77(8); 1831-41. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Feminino , Radioisótopos de Flúor , Glioma/metabolismo , Glioma/patologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Nus , Microglia/patologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores de GABA/metabolismo , Microambiente Tumoral
18.
J Cereb Blood Flow Metab ; 37(3): 1163-1178, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28079433

RESUMO

Cannabinoid type 2 receptors (CB2R) have emerged as promising targets for the diagnosis and therapy of brain pathologies. However, no suitable radiotracers for accurate CB2R mapping have been found to date, limiting the investigation of the CB2 receptor expression using positron emission tomography (PET) imaging. In this work, we report the evaluation of the in vivo expression of CB2R with [11C]A-836339 PET after cerebral ischemia and in two rat models of neuroinflammation, first by intrastriatal LPS and then by AMPA injection. PET images and in vitro autoradiography showed a lack of specific [11C]A-836339 uptake in these animal models demonstrating the limitation of this radiotracer to image CB2 receptor under neuroinflammatory conditions. Further, using immunohistochemistry, the CB2 receptor displayed a modest expression increase after cerebral ischemia, LPS and AMPA models. Finally, [18F]DPA-714-PET and immunohistochemistry demonstrated decreased neuroinflammation by a selective CB2R agonist, JWH133. Taken together, these findings suggest that [11C]A-836339 is not a suitable radiotracer to monitor in vivo CB2R expression by using PET imaging. Future studies will have to investigate alternative radiotracers that could provide an accurate binding to CB2 receptors following brain inflammation.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/normas , Receptor CB2 de Canabinoide/análise , Tiazóis/análise , Animais , Autorradiografia , Isquemia Encefálica , Radioisótopos de Carbono , Modelos Animais de Doenças , Inflamação , Camundongos , Tomografia por Emissão de Pósitrons/normas , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/farmacocinética , Tiazóis/farmacocinética
19.
Mol Imaging Biol ; 18(1): 127-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26194010

RESUMO

PURPOSE: Many radioligands have been explored for imaging the 18-kDa translocator protein (TSPO), a diagnostic and therapeutic target for inflammation and cancer. Here, we investigated the TSPO radioligand [(18)F]DPA-714 for positron emission tomography (PET) imaging of cancer and inflammation. PROCEDURES: [(18)F]DPA-714 PET imaging was performed in 8 mouse and rat models of breast and brain cancer and 4 mouse and rat models of muscular and bowel inflammation. RESULTS: [(18)F]DPA-714 showed different uptake levels in healthy organs and malignant tissues of mice and rats. Although high and displaceable [(18)F]DPA-714 binding is observed ex vivo, TSPO-positive PET imaging of peripheral lesions of cancer and inflammation in mice did not show significant lesion-to-background signal ratios. Slower [(18)F]DPA-714 metabolism and muscle clearance in mice compared to rats may explain the elevated background signal in peripheral organs in this species. CONCLUSION: Although TSPO is an evolutionary conserved protein, inter- and intra-species differences call for further exploration of the pharmacological parameters of TSPO radioligands.


Assuntos
Proteínas de Transporte/metabolismo , Inflamação/diagnóstico por imagem , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Pirazóis/metabolismo , Pirimidinas/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/complicações , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/complicações , Neoplasias/patologia , Pirazóis/sangue , Pirazóis/farmacocinética , Pirimidinas/sangue , Pirimidinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Ratos Wistar , Distribuição Tecidual
20.
J Nucl Med ; 54(12): 2125-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24212976

RESUMO

UNLABELLED: On the one hand, the translocator protein (TSPO) radioligand N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714) has been suggested to serve as an alternative radiotracer to image human glioma, and on the other hand the alkylphosphocholine erufosine (ErPC3) has been reported to induce apoptosis in otherwise highly apoptosis-resistant glioma cell lines. The induction of apoptosis by ErPC3 requires TSPO, a mitochondrial membrane protein highly expressed in malignant gliomas. In this preclinical study, we monitored the effect of ErPC3 treatment in vivo using (18)F-DPA-714 PET. METHODS: In vitro studies investigated the antitumor effect of ErPC3 in 9L rat gliosarcoma cells. In vivo, glioma-bearing rats were imaged with (18)F-DPA-714 for the time of treatment. RESULTS: A significant decrease in 9L cell proliferation and viability and a significant increase in apoptosis and caspase-3 activation were demonstrated on ErPC3 treatment in cell culture. In the rat model, ErPC3 administration resulted in significant changes in (18)F-DPA-714 tumor uptake over the course of the treatment. Immunohistochemistry revealed reduced tumor volume and increased cell death in ErPC3-treated animals accompanied by infiltration of the tumor core by CD11b-positive microglia/macrophages and glial fibrillary acidic protein-positive astrocytes. CONCLUSION: Our findings demonstrate a potent antitumor effect of ErPC3 in vitro, in vivo, and ex vivo. PET imaging of TSPO expression using (18)F-DPA-714 allows effective monitoring and quantification of disease progression and response to ErPC3 therapy in intracranial 9L gliomas.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Proteínas de Transporte/metabolismo , Radioisótopos de Flúor , Glioblastoma/tratamento farmacológico , Organofosfatos/farmacologia , Pirazóis , Pirimidinas , Compostos de Amônio Quaternário/farmacologia , Receptores de GABA-A/metabolismo , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Glioblastoma/patologia , Masculino , Organofosfatos/metabolismo , Organofosfatos/uso terapêutico , Tomografia por Emissão de Pósitrons , Pirazóis/metabolismo , Pirimidinas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Compostos de Amônio Quaternário/uso terapêutico , Ratos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...