Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 13(2): 245-262, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993074

RESUMO

Environmental DNA (eDNA) extracted from water samples has recently shown potential as a valuable source of population genetic information for aquatic macroorganisms. This approach offers several potential advantages compared with conventional tissue-based methods, including the fact that eDNA sampling is noninvasive and generally more cost-efficient. Currently, eDNA approaches have been limited to single-marker studies of mitochondrial DNA (mtDNA), and the relationship between eDNA haplotype composition and true haplotype composition still needs to be thoroughly verified. This will require testing of bioinformatic and statistical software to correct for erroneous sequences, as well as biases and random variation in relative sequence abundances. However, eDNA-based population genetic methods have far-reaching potential for both basic and applied research. In this paper, we present a brief overview of the achievements of eDNA-based population genetics to date, and outline the prospects for future developments in the field, including the estimation of nuclear DNA (nuDNA) variation and epigenetic information. We discuss the challenges associated with eDNA samples as opposed to those of individual tissue samples and assess whether eDNA might offer additional types of information unobtainable with tissue samples. Lastly, we provide recommendations for determining whether an eDNA approach would be a useful and suitable choice in different research settings. We limit our discussion largely to contemporary aquatic systems, but the advantages, challenges, and perspectives can to a large degree be generalized to eDNA studies with a different spatial and temporal focus.

2.
Gigascience ; 9(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942620

RESUMO

BACKGROUND: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked. FINDINGS: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. CONCLUSIONS: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.


Assuntos
Decapodiformes/genética , Genoma , Genômica , Animais , Evolução Biológica , Cromatografia Líquida , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Genômica/métodos , Anotação de Sequência Molecular , Família Multigênica , RNA não Traduzido , Espectrometria de Massas em Tandem , Transcriptoma , Sequenciamento Completo do Genoma
3.
Front Physiol ; 9: 700, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962956

RESUMO

Here, three researchers who have recently embarked on careers in cephalopod biology discuss the current state of the field and offer their hopes for the future. Seven major topics are explored: genetics, aquaculture, climate change, welfare, behavior, cognition, and neurobiology. Recent developments in each of these fields are reviewed and the potential of emerging technologies to address specific gaps in knowledge about cephalopods are discussed. Throughout, the authors highlight specific challenges that merit particular focus in the near-term. This review and prospectus is also intended to suggest some concrete near-term goals to cephalopod researchers and inspire those working outside the field to consider the revelatory potential of these remarkable creatures.

4.
PeerJ ; 6: e4331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456885

RESUMO

Comprising more than 800 extant species, the class Cephalopoda (octopuses, squid, cuttlefish, and nautiluses) is a fascinating group of marine conchiferan mollusks. Recently, the first cephalopod genome (of Octopus bimaculoides) was published, providing a genomic framework, which will enable more detailed investigations of cephalopod characteristics, including developmental, morphological, and behavioural traits. Meanwhile, a robust phylogeny of the members of the subclass Coleoidea (octopuses, squid, cuttlefishes) is crucial for comparative and evolutionary studies aiming to investigate the group's traits and innovations, but such a phylogeny has proven very challenging to obtain. Here, we present the results of phylogenetic inference at the genus level using mitochondrial and nuclear marker sequences available from public databases. Topologies are presented which show support for (1) the monophyly of the two main superorders, Octobrachia and Decabrachia, and (2) some of the interrelationships at the family level. We have mapped morphological characters onto the tree and conducted molecular dating analyses, obtaining congruent results with previous estimates of divergence in major lineages. Our study also identifies unresolved phylogenetic relationships within the cephalopod phylogeny and insufficient taxonomic sampling among squids excluding the Loliginidae in the Decabrachia and within the Order Cirromorphida in the Octobrachia. Genomic and transcriptomic resources should enable resolution of these issues in the relatively near future. We provide our alignment as an open access resource, to allow other researchers to reconstruct phylogenetic trees upon this work in the future.

5.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250188

RESUMO

Coleoid cephalopod molluscs comprise squid, cuttlefish and octopuses, and represent nearly the entire diversity of modern cephalopods. Sophisticated adaptations such as the use of colour for camouflage and communication, jet propulsion and the ink sac highlight the unique nature of the group. Despite these striking adaptations, there are clear parallels in ecology between coleoids and bony fishes. The coleoid fossil record is limited, however, hindering confident analysis of the tempo and pattern of their evolution. Here we use a molecular dataset (180 genes, approx. 36 000 amino acids) of 26 cephalopod species to explore the phylogeny and timing of cephalopod evolution. We show that crown cephalopods diverged in the Silurian-Devonian, while crown coleoids had origins in the latest Palaeozoic. While the deep-sea vampire squid and dumbo octopuses have ancient origins extending to the Early Mesozoic Era, 242 ± 38 Ma, incirrate octopuses and the decabrachian coleoids (10-armed squid) diversified in the Jurassic Period. These divergence estimates highlight the modern diversity of coleoid cephalopods emerging in the Mesozoic Marine Revolution, a period that also witnessed the radiation of most ray-finned fish groups in addition to several other marine vertebrates. This suggests that that the origin of modern cephalopod biodiversity was contingent on ecological competition with marine vertebrates.


Assuntos
Evolução Biológica , Cefalópodes/classificação , Filogenia , Animais , Biodiversidade , Fósseis
6.
Proc Biol Sci ; 280(1759): 20130273, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23516246

RESUMO

Despite its charismatic appeal to both scientists and the general public, remarkably little is known about the giant squid Architeuthis, one of the largest of the invertebrates. Although specimens of Architeuthis are becoming more readily available owing to the advancement of deep-sea fishing techniques, considerable controversy exists with regard to topics as varied as their taxonomy, biology and even behaviour. In this study, we have characterized the mitochondrial genome (mitogenome) diversity of 43 Architeuthis samples collected from across the range of the species, in order to use genetic information to provide new and otherwise difficult to obtain insights into the life of this animal. The results show no detectable phylogenetic structure at the mitochondrial level and, furthermore, that the level of nucleotide diversity is exceptionally low. These observations are consistent with the hypotheses that there is only one global species of giant squid, Architeuthis dux (Steenstrup, 1857), and that it is highly vagile, possibly dispersing through both a drifting paralarval stage and migration of larger individuals. Demographic history analyses of the genetic data suggest that there has been a recent population expansion or selective sweep, which may explain the low level of genetic diversity.


Assuntos
Decapodiformes/genética , Variação Genética , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Decapodiformes/classificação , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Filogeografia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...