Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(12): 123903, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586946

RESUMO

The proposed facility explores materials under ultra-high magnetic fields. By combining the power of high fields to tune materials and of neutron scattering to probe the resulting changes down to the atomic scale, this facility will enable transformative progress in the study of quantum materials and is named for the "TITAN" subset of Greek gods to reflect this transformation. TITAN will offer DC magnetic fields up to at least 20 T. Exploiting the record brightness and bandwidth of the Second Target Station at the Spallation Neutron Source, TITAN will probe atomic-scale responses through high efficiency neutron spectroscopy up to 80 meV energy transfer, high resolution diffraction, and small angle neutron scattering. Focusing neutron optics will maximize flux on accurately positioned samples, while radial collimation and optimized shielding and detection strategies will minimize backgrounds.

2.
Rev Sci Instrum ; 93(8): 083907, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050043

RESUMO

Three concepts for the application of multi-extreme conditions under in situ neutron scattering are described here. The first concept is a neutron diamond anvil cell made from a non-magnetic alloy. It is shrunk in size to fit existing magnets and future magnet designs and is designed for best pressure stability upon cooling. This will allow for maximum pressures above 10 GPa to be applied simultaneously with (steady-state) high magnetic field and (ultra-)low temperature. Additionally, an implementation of miniature coils for neutron diamond cells is presented for pulsed-field applications. The second concept presents a set-up for laser-heating a neutron diamond cell using a defocused CO2 laser. Cell, anvil, and gasket stability will be achieved through stroboscopic measurements and maximum temperatures of 1500 K are anticipated at pressures to the megabar. The third concept presents a hybrid levitator to enable measurements of solids and liquids at temperatures in excess of 4000 K. This will be accomplished by a combination of bulk induction and surface laser heating and hyperbaric conditions to reduce evaporation rates. The potential for deployment of these multi-extreme environments within this first instrument suite of the Second Target Station is described with a special focus on VERDI, PIONEER, CENTAUR, and CHESS. Furthermore, considerations for deployment on future instruments, such as the one proposed as TITAN, are discussed. Overall, the development of these multi-extremes at the Second Target Station, but also beyond, will be highly advantageous for future experimentation and will give access to parameter space previously not possible for neutron scattering.

3.
Phys Rev Lett ; 129(25): 255901, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608232

RESUMO

Fast-propagating waves in the phase of incommensurate structures, called phasons, have long been argued to enhance thermal transport. Although supersonic phason velocities have been observed, the lifetimes, from which mean free paths can be determined, have not been resolved. Using inelastic neutron scattering and thermal conductivity measurements, we establish that phasons in piezoelectric fresnoite make a major contribution to thermal conductivity by propagating with higher group velocities and longer mean free paths than phonons. The phason contribution to thermal conductivity is maximum near room temperature, where it is the single largest contributing degree of freedom.

4.
Rev Sci Instrum ; 85(7): 075112, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25085178

RESUMO

We constructed a compact in situ polarized (3)He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the (3)He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% (3)He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained.

5.
Phys Rev Lett ; 101(13): 135703, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851463

RESUMO

Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au0.52Zn0.48. Elastic neutron scattering detects new commensurate Bragg peaks (modulation) appearing at Q =(1.33,0.67,0) at temperatures corresponding to each sample's transition temperature (TM = 64 and 45 K, respectively). Although the new Bragg peaks appear in a discontinuous manner in the Au0.52Zn0.48 sample, they appear in a continuous manner in AuZn. Surprising us, the temperature dependence of the AuZn Bragg peak intensity and the specific-heat jump near TM are in favorable accord with a continuous transition. A fit to the pressure dependence of TM suggests the presence of a critical end point in the AuZn phase diagram located at TM* = 2.7 K and p* = 3.1 GPa.


Assuntos
Ligas de Ouro/química , Zinco/química , Materiais Biocompatíveis/química , Difração de Nêutrons , Temperatura , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...