Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38804063

RESUMO

We have, in-situ, prepared and measured the temperature dependence of thermopowerS(T) and resistanceR(T) of Bi2Te3topological insulator (TI) thin films in the amorphous and crystalline phase. Samples were prepared by sequential flash-evaporation at liquid4He temperature. TheS(T) in the amorphous phase is negative and much larger compared to other known amorphous materials, while in the crystalline phase it is also negative and behaves linearly with the temperature. The resistivityρ(T) in the amorphous phase shows a semiconducting like behavior that changes to a linear metallic behavior after crystallization.S(T) anρ(T) results in the crystalline phase are in good agreement with results obtained both in bulk and thin films reported in the literature. Linear behavior of theρ(T) forT> 15K indicates the typical metallic contribution from the surface states as observed in other TI novel materials. The low temperature conductivityT< 10K exhibits logarithmic temperature dependent positive slopeκ∼ 0.21, indicating the dominance of electron-electron interaction (EEI) over the quantum interference effect (QIE), with a clear two dimensional nature of the contribution. Raman spectroscopy showed that the sample has crystallized in the trigonalR3mspace group. Energy-dispersive X-ray spectroscopy reveales high homogeneity in the concentration and no magnetic impurities introduced during preparation or growth.

2.
Opt Express ; 32(5): 8447-8458, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439500

RESUMO

Field-effect transistors are capable of detecting electromagnetic radiation from less than 100 GHz up to very high frequencies reaching well into the infrared spectral range. Here, we report on frequency coverage of up to 30THz, thus reaching the technologically important frequency regime of CO2 lasers, using GaAs/AlGaAs high-electron-mobility transistors. A detailed study of the speed and polarization dependence of the responsivity allows us to identify a cross over of the dominant detection mechanism from ultrafast non-quasistatic rectification at low Terahertz frequencies to slow rectification based on a combination of the Seebeck and bolometric effects at high frequencies, occurring at about the boundary between the Terahertz frequency range and the infrared at 10THz.

3.
ACS Nano ; 18(4): 2898-2905, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38240736

RESUMO

The layered, air-stable van der Waals antiferromagnetic compound CrSBr exhibits pronounced coupling among its optical, electronic, and magnetic properties. As an example, exciton dynamics can be significantly influenced by lattice vibrations through exciton-phonon coupling. Using low-temperature photoluminescence spectroscopy, we demonstrate the effective coupling between excitons and phonons in nanometer-thick CrSBr. By careful analysis, we identify that the satellite peaks predominantly arise from the interaction between the exciton and an optical phonon with a frequency of 118 cm-1 (∼14.6 meV) due to the out-of-plane vibration of Br atoms. Power-dependent and temperature-dependent photoluminescence measurements support exciton-phonon coupling and indicate a coupling between magnetic and optical properties, suggesting the possibility of carrier localization in the material. The presence of strong coupling between the exciton and the lattice may have important implications for the design of light-matter interactions in magnetic semiconductors and provide insights into the exciton dynamics in CrSBr. This highlights the potential for exploiting exciton-phonon coupling to control the optical properties of layered antiferromagnetic materials.

4.
Nat Commun ; 14(1): 7493, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980430

RESUMO

Strong circularly polarized excitation opens up the possibility to generate and control effective magnetic fields in solid state systems, e.g., via the optical inverse Faraday effect or the phonon inverse Faraday effect. While these effects rely on material properties that can be tailored only to a limited degree, plasmonic resonances can be fully controlled by choosing proper dimensions and carrier concentrations. Plasmon resonances provide new degrees of freedom that can be used to tune or enhance the light-induced magnetic field in engineered metamaterials. Here we employ graphene disks to demonstrate light-induced transient magnetic fields from a plasmonic circular current with extremely high efficiency. The effective magnetic field at the plasmon resonance frequency of the graphene disks (3.5 THz) is evidenced by a strong ( ~ 1°) ultrafast Faraday rotation ( ~ 20 ps). In accordance with reference measurements and simulations, we estimated the strength of the induced magnetic field to be on the order of 0.7 T under a moderate pump fluence of about 440 nJ cm-2.

5.
Phys Rev Lett ; 131(18): 186903, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977608

RESUMO

We study THz-driven condensate dynamics in epitaxial thin films of MgB_{2}, a prototype two-band superconductor (SC) with weak interband coupling. The temperature and excitation density dependent dynamics follow the behavior predicted by the phenomenological bottleneck model for the single-gap SC, implying adiabatic coupling between the two condensates on the ps timescale. The amplitude of the THz-driven suppression of condensate density reveals an unexpected decrease in pair-breaking efficiency with increasing temperature-unlike in the case of optical excitation. The reduced pair-breaking efficiency of narrow-band THz pulses, displaying minimum near ≈0.7 T_{c}, is attributed to THz-driven, long-lived, nonthermal quasiparticle distribution, resulting in Eliashberg-type enhancement of superconductivity, competing with pair breaking.

6.
Nature ; 622(7983): 487-492, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853152

RESUMO

Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, by both weak and strong light-matter coupling1,2. Here we report experimental evidence of reversible cavity control of a metal-to-insulator phase transition in a correlated solid-state material. We embed the charge density wave material 1T-TaS2 into cryogenic tunable terahertz cavities3 and show that a switch between conductive and insulating behaviours, associated with a large change in the sample temperature, is obtained by mechanically tuning the distance between the cavity mirrors and their alignment. The large thermal modification observed is indicative of a Purcell-like scenario in which the spectral profile of the cavity modifies the energy exchange between the material and the external electromagnetic field. Our findings provide opportunities for controlling the thermodynamics and macroscopic transport properties of quantum materials by engineering their electromagnetic environment.

7.
Rev Sci Instrum ; 93(3): 033102, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365020

RESUMO

We report here the realization and commissioning of an experiment dedicated to the study of the optical properties of light-matter hybrids constituted of crystalline samples embedded in an optical cavity. The experimental assembly developed offers the unique opportunity to study the weak and strong coupling regimes between a tunable optical cavity in cryogenic environment and low energy degrees of freedom, such as phonons, magnons, or charge fluctuations. We describe here the setup developed that allows for the positioning of crystalline samples in an optical cavity of different quality factors, the tuning of the cavity length at cryogenic temperatures, and its optical characterization with a broadband time domain THz spectrometer (0.2-6 THz). We demonstrate the versatility of the setup by studying the vibrational strong coupling in CuGeO3 single crystal at cryogenic temperatures.

8.
Opt Express ; 29(13): 19920-19927, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266092

RESUMO

We report the emission of high-field terahertz pulses from a GaAs large-area photoconductive emitter pumped with a Ti:Sapphire amplifier laser system at 800 nm wavelength and 1 kHz repetition rate. The maximum estimated terahertz electric field at the focus is ≳ 230 kV/cm. We also demonstrate the capability of the terahertz field to cause a non-linear effect, which usually requires high-field terahertz pulses generated through optical rectification or an air plasma. A significant drop in the optical conductivity of optically pumped GaAs due to Γ-L inter-valley scattering of free electrons caused by the strong THz field is found.

9.
Opt Express ; 28(24): 35490-35497, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379662

RESUMO

We investigate here terahertz enhancement effects arising from micrometer and nanometer structured electrode features of photoconductive terahertz emitters. Nanostructured electrode based emitters utilizing the palsmonic effect are currently one of the hottest topics in the research field. We demonstrate here that even in the absence of any plasmonic resonance with the pump pulse, such structures can improve the antenna effect by enhancing the local d.c. electric field near the structure edges. Utilizing this effect in Hilbert-fractal and grating-like designs, enhancement of the THz field of up to a factor of ∼ 2 is observed. We conclude that the cause of this THz emission enhancement in our emitters is different from the earlier reported plasmonic-electrode effect in a similar grating-like structure. In our structure, the proximity of photoexcited carriers to the electrodes and local bias field enhancement close to the metallization cause the enhanced efficiency. Due to the nature of this effect, the THz emission efficiency is almost independent of the pump laser polarization. Compared to the plasmonic effect, these effects work under relaxed device fabrication and operating conditions.

10.
Opt Express ; 28(17): 25358-25370, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907058

RESUMO

We report the observation of the intersubband AC-Stark effect in a single wide GaAs/AlGaAs quantum well. In a three-level configuration, the n = 2 to n = 3 intersubband transition is resonantly pumped at 3.5 THz using a free-electron laser. The induced spectral changes are probed using THz time-domain spectroscopy with a broadband pulse extending up to 4 THz. We observe an Autler-Townes splitting at the 1 - 2 intersubband transition as well as an indication of a Mollow triplet at the 2 - 3 transition, both evidencing the dressed states. For longer delay times, a relaxation of the hot-electron system with a time constant of around 420 ps is measured.

11.
Light Sci Appl ; 9: 97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549977

RESUMO

Plasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time. Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave, collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode. In this paper, we present the first direct visualization of these waves. Employing graphene FETs containing a buried gate electrode, we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions. Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting. The plasma waves, excited at 2 THz, are overdamped, and their decay time lies in the range of 25-70 fs. Despite this short decay time, the decay length is rather long, i.e., 0.3-0.5 µm, because of the rather large propagation speed of the plasma waves, which is found to lie in the range of 3.5-7 × 106 m/s, in good agreement with theory. The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted 1 4 power law.

12.
Light Sci Appl ; 9: 30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140221

RESUMO

Phase-stable electromagnetic pulses in the THz frequency range offer several unique capabilities in time-resolved spectroscopy. However, the diversity of their application is limited by the covered spectral bandwidth. In particular, the upper frequency limit of photoconductive emitters - the most widespread technique in THz spectroscopy - reaches only up to 7 THz in the regular transmission mode due to absorption by infrared-active optical phonons. Here, we present ultrabroadband (extending up to 70 THz) THz emission from an Au-implanted Ge emitter that is compatible with mode-locked fibre lasers operating at wavelengths of 1.1 and 1.55 µm with pulse repetition rates of 10 and 20 MHz, respectively. This result opens up the possibility for the development of compact THz photonic devices operating up to multi-THz frequencies that are compatible with Si CMOS technology.

13.
Opt Express ; 27(9): 13108-13115, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052840

RESUMO

We study here the effect of the electrode parameters on the terahertz emission efficiency of large-area emitters based on interdigitated electrodes. Electrode parameters are optimized to get maximum terahertz emission by optimizing the balance condition among the emission efficiency of individual electrode pairs, number of emitters per unit area, and fraction of semiconductor exposed for optical pumping. A maximum enhancement by about 50% in the peak to peak electric field is observed as compared to the previous state of the art design.

14.
Nanotechnology ; 30(8): 084003, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30523880

RESUMO

We report a strong shift of the plasma resonance in highly-doped GaAs/InGaAs core/shell nanowires (NWs) for intense infrared excitation observed by scattering-type scanning near-field infrared microscopy. The studied NWs show a sharp plasma resonance at a photon energy of about 125 meV in the case of continuous wave excitation by a CO2 laser. Probing the same NWs with the pulsed free-electron laser with peak electric field strengths up to several 10 kV cm-1 reveals a power-dependent redshift to about 95 meV and broadening of the plasmonic resonance. We assign this effect to a substantial heating of the electrons in the conduction band and subsequent increase of the effective mass in the nonparabolic Γ-valley.

16.
Rev Sci Instrum ; 89(3): 033702, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604801

RESUMO

We introduce a scattering-type scanning near-field infrared microscope (s-SNIM) for the local scale near-field sample analysis and spectroscopy from room temperature down to liquid helium (LHe) temperature. The extension of s-SNIM down to T = 5 K is in particular crucial for low-temperature phase transitions, e.g., for the examination of superconductors, as well as low energy excitations. The low temperature (LT) s-SNIM performance is tested with CO2-IR excitation at T = 7 K using a bare Au reference and a structured Si/SiO2-sample. Furthermore, we quantify the impact of local laser heating under the s-SNIM tip apex by monitoring the light-induced ferroelectric-to-paraelectric phase transition of the skyrmion-hosting multiferroic material GaV4S8 at Tc = 42 K. We apply LT s-SNIM to study the spectral response of GaV4S8 and its lateral domain structure in the ferroelectric phase by the mid-IR to THz free-electron laser-light source FELBE at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. Notably, our s-SNIM is based on a non-contact atomic force microscope (AFM) and thus can be complemented in situ by various other AFM techniques, such as topography profiling, piezo-response force microscopy (PFM), and/or Kelvin-probe force microscopy (KPFM). The combination of these methods supports the comprehensive study of the mutual interplay in the topographic, electronic, and optical properties of surfaces from room temperature down to 5 K.

17.
Phys Rev Lett ; 119(6): 067405, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949645

RESUMO

Recent pump-probe experiments performed on graphene in a perpendicular magnetic field have revealed carrier relaxation times ranging from picoseconds to nanoseconds depending on the quality of the sample. To explain this surprising behavior, we propose a novel symmetry-breaking defect-assisted relaxation channel. This enables scattering of electrons with single out-of-plane phonons, which drastically accelerate the carrier scattering time in low-quality samples. The gained insights provide a strategy for tuning the carrier relaxation time in graphene and related materials by orders of magnitude.

18.
Nat Commun ; 8: 15042, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28485387

RESUMO

Saturation of carrier occupation in optically excited materials is a well-established phenomenon. However, so far, the observed saturation effects have always occurred in the strong-excitation regime and have been explained by Pauli blocking of the optically filled quantum states. On the basis of microscopic theory combined with ultrafast pump-probe experiments, we reveal a new low-intensity saturation regime in graphene that is purely based on many-particle scattering and not Pauli blocking. This results in an unconventional double-bended saturation behaviour: both bendings separately follow the standard saturation model exhibiting two saturation fluences; however, the corresponding fluences differ by three orders of magnitude and have different physical origin. Our results demonstrate that this new and unexpected behaviour can be ascribed to an interplay between time-dependent many-particle scattering and phase-space filling effects.

19.
Nano Lett ; 17(4): 2184-2188, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28234493

RESUMO

For Landau-quantized graphene, featuring an energy spectrum consisting of nonequidistant Landau levels, theory predicts a giant resonantly enhanced optical nonlinearity. We verify the nonlinearity in a time-integrated degenerate four-wave mixing (FWM) experiment in the mid-infrared spectral range, involving the Landau levels LL-1, LL0 and LL1. A rapid dephasing of the optically induced microscopic polarization on a time scale shorter than the pulse duration (∼4 ps) is observed, while a complementary pump-probe experiment under the same experimental conditions reveals a much longer lifetime of the induced population. The FWM signal shows the expected field dependence with respect to lowest order perturbation theory for low fields. Saturation sets in for fields above ∼6 kV/cm. Furthermore, the resonant behavior and the order of magnitude of the third-order susceptibility are in agreement with our theoretical calculations.

20.
Opt Express ; 24(20): 22628-22634, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27828333

RESUMO

We investigate strip line photoconductive terahertz (THz) emitters in a regime where both the direct emission of accelerated carriers in the semiconductor and the antenna-mediated emission from the strip line play a significant role. In particular, asymmetric strip line structures are studied. The widths of the two electrodes have been varied from 2 µm to 50 µm. The THz emission efficiency is observed to increase linearly with the width of the anode, which acts here as a plasmonic antenna giving rise to enhanced THz emission. In contrast, the cathode width does not play any significant role on THz emission efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...