Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Curr Biol ; 33(1): 86-97.e10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36528024

RESUMO

Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.


Assuntos
Ursidae , Animais , Fluxo Gênico , Variação Genética , Genoma , Estudo de Associação Genômica Ampla , Ursidae/genética
2.
Ecol Evol ; 12(10): e9406, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36248671

RESUMO

The phylogeography of the American black bear (Ursus americanus) is characterized by isolation into glacial refugia, followed by population expansion and genetic admixture. Anthropogenic activities, including overharvest, habitat loss, and transportation infrastructure, have also influenced their landscape genetic structure. We describe the genetic structure of the American black bear in the American Southwest and northern Mexico and investigate how prehistoric and contemporary forces shaped genetic structure and influenced gene flow. Using a suite of microsatellites and a sample of 550 bears, we identified 14 subpopulations organized hierarchically following the distribution of ecoregions and mountain ranges containing black bear habitat. The pattern of subdivision we observed is more likely a product of postglacial habitat fragmentation during the Pleistocene and Holocene, rather than a consequence of contemporary anthropogenic barriers to movement during the Anthropocene. We used linear mixed-effects models to quantify the relationship between landscape resistance and genetic distance among individuals, which indicated that both isolation by resistance and geographic distance govern gene flow. Gene flow was highest among subpopulations occupying large tracts of contiguous habitat, was reduced among subpopulations in the Madrean Sky Island Archipelago, where montane habitat exists within a lowland matrix of arid lands, and was essentially nonexistent between two isolated subpopulations. We found significant asymmetric gene flow supporting the hypothesis that bears expanded northward from a Pleistocene refugium located in the American Southwest and northern Mexico and that major highways were not yet affecting gene flow. The potential vulnerability of the species to climate change, transportation infrastructure, and the US-Mexico border wall highlights conservation challenges and opportunities for binational collaboration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...