Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38464291

RESUMO

Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.

2.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496463

RESUMO

Somatic genome editing in mouse models has increased our understanding of the in vivo effects of genetic alterations in areas ranging from neuroscience to cancer biology and beyond. However, existing models have been restricted in their ability to create multiple targeted edits, which has limited investigations into complex genetic interactions that underlie development, homeostasis, and disease. To accelerate and expand the generation of complex genotypes in somatic cells, we generated transgenic mice with Cre-regulated and constitutive expression of enhanced Acidaminococcus sp. Cas12a (enAsCas12a), an RNA-guided endonuclease with unique attributes that enable simple targeting of multiple genes. In these mice, enAsCas12a-mediated somatic genome editing robustly generated compound genotypes, as exemplified by the initiation of oncogene-negative lung adenocarcinoma, small-cell lung cancer, and a canonical genotype of pancreatic ductal adenocarcinoma, all driven by homozygous inactivation of trios of tumor suppressor genes. We further integrated these modular crRNA arrays with clonal barcoding to quantify the size and number of tumors with each array. These Cas12a alleles will enable the rapid generation of disease models and broadly facilitate the high-throughput investigation of coincident genomic alterations in somatic cells in vivo .

3.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496564

RESUMO

Lung adenocarcinoma, the most common subtype of lung cancer, is genomically complex, with tumors containing tens to hundreds of non-synonymous mutations. However, little is understood about how genes interact with each other to enable tumorigenesis in vivo , largely due to a lack of methods for investigating genetic interactions in a high-throughput and multiplexed manner. Here, we employed a novel platform to generate tumors with all pairwise inactivation of ten tumor suppressor genes within an autochthonous mouse model of oncogenic KRAS-driven lung cancer. By quantifying the fitness of tumors with every single and double mutant genotype, we show that most tumor suppressor genetic interactions exhibited negative epistasis, with diminishing returns on tumor fitness. In contrast, Apc inactivation showed positive epistasis with the inactivation of several other genes, including dramatically synergistic effects on tumor fitness in combination with Lkb1 or Nf1 inactivation. This approach has the potential to expand the scope of genetic interactions that may be functionally characterized in vivo , which could lead to a better understanding of how complex tumor genotypes impact each step of carcinogenesis.

4.
Nat Cell Biol ; 25(10): 1506-1519, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783795

RESUMO

Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Astrócitos/patologia , Neoplasias Pulmonares/metabolismo , Ecossistema , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Microambiente Tumoral
5.
Nat Commun ; 14(1): 6422, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828026

RESUMO

Tumors acquire alterations in oncogenes and tumor suppressor genes in an adaptive walk through the fitness landscape of tumorigenesis. However, the interactions between oncogenes and tumor suppressor genes that shape this landscape remain poorly resolved and cannot be revealed by human cancer genomics alone. Here, we use a multiplexed, autochthonous mouse platform to model and quantify the initiation and growth of more than one hundred genotypes of lung tumors across four oncogenic contexts: KRAS G12D, KRAS G12C, BRAF V600E, and EGFR L858R. We show that the fitness landscape is rugged-the effect of tumor suppressor inactivation often switches between beneficial and deleterious depending on the oncogenic context-and shows no evidence of diminishing-returns epistasis within variants of the same oncogene. These findings argue against a simple linear signaling relationship amongst these three oncogenes and imply a critical role for off-axis signaling in determining the fitness effects of inactivating tumor suppressors.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Oncogenes/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Mutação
6.
Proc Natl Acad Sci U S A ; 120(38): e2303224120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695905

RESUMO

Cancer genomes are almost invariably complex with genomic alterations cooperating during each step of carcinogenesis. In cancers that lack a single dominant oncogene mutation, cooperation between the inactivation of multiple tumor suppressor genes can drive tumor initiation and growth. Here, we shed light on how the sequential acquisition of genomic alterations generates oncogene-negative lung tumors. We couple tumor barcoding with combinatorial and multiplexed somatic genome editing to characterize the fitness landscapes of three tumor suppressor genes NF1, RASA1, and PTEN, the inactivation of which jointly drives oncogene-negative lung adenocarcinoma initiation and growth. The fitness landscape was surprisingly accessible, with each additional mutation leading to growth advantage. Furthermore, the fitness landscapes remained fully accessible across backgrounds with the inactivation of additional tumor suppressor genes. These results suggest that while predicting cancer evolution will be challenging, acquiring the multiple alterations that drive the growth of oncogene-negative tumors can be facilitated by the lack of constraints on mutational order.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Oncogenes/genética , Adenocarcinoma de Pulmão/genética , Mutação , Neoplasias Pulmonares/genética , Transformação Celular Neoplásica , Proteína p120 Ativadora de GTPase
7.
Artigo em Inglês | MEDLINE | ID: mdl-37277208

RESUMO

The vast number of genomic and molecular alterations in cancer pose a substantial challenge to uncovering the mechanisms of tumorigenesis and identifying therapeutic targets. High-throughput functional genomic methods in genetically engineered mouse models allow for rapid and systematic investigation of cancer driver genes. In this review, we discuss the basic concepts and tools for multiplexed investigation of functionally important cancer genes in vivo using autochthonous cancer models. Furthermore, we highlight emerging technical advances in the field, potential opportunities for future investigation, and outline a vision for integrating multiplexed genetic perturbations with detailed molecular analyses to advance our understanding of the genetic and molecular basis of cancer.


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/tratamento farmacológico , Oncogenes , Genômica , Transformação Celular Neoplásica/genética
8.
Nat Methods ; 20(7): 1070-1081, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291262

RESUMO

The development of transgenic mouse models that express genes of interest in specific cell types has transformed our understanding of basic biology and disease. However, generating these models is time- and resource-intensive. Here we describe a model system, SELective Expression and Controlled Transduction In Vivo (SELECTIV), that enables efficient and specific expression of transgenes by coupling adeno-associated virus (AAV) vectors with Cre-inducible overexpression of the multi-serotype AAV receptor, AAVR. We demonstrate that transgenic AAVR overexpression greatly increases the efficiency of transduction of many diverse cell types, including muscle stem cells, which are normally refractory to AAV transduction. Superior specificity is achieved by combining Cre-mediated AAVR overexpression with whole-body knockout of endogenous Aavr, which is demonstrated in heart cardiomyocytes, liver hepatocytes and cholinergic neurons. The enhanced efficacy and exquisite specificity of SELECTIV has broad utility in development of new mouse model systems and expands the use of AAV for gene delivery in vivo.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos , Camundongos , Animais , Vetores Genéticos/genética , Camundongos Transgênicos , Terapia Genética , Transgenes , Dependovirus/genética , Transdução Genética
9.
Nat Rev Cancer ; 23(6): 391-407, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37138029

RESUMO

Metastasis has long been understood to lead to the overwhelming majority of cancer-related deaths. However, our understanding of the metastatic process, and thus our ability to prevent or eliminate metastases, remains frustratingly limited. This is largely due to the complexity of metastasis, which is a multistep process that likely differs across cancer types and is greatly influenced by many aspects of the in vivo microenvironment. In this Review, we discuss the key variables to consider when designing assays to study metastasis: which source of metastatic cancer cells to use and where to introduce them into mice to address different questions of metastasis biology. We also examine methods that are being used to interrogate specific steps of the metastatic cascade in mouse models, as well as emerging techniques that may shed new light on previously inscrutable aspects of metastasis. Finally, we explore approaches for developing and using anti-metastatic therapies, and how mouse models can be used to test them.


Assuntos
Neoplasias , Animais , Camundongos , Humanos , Neoplasias/patologia , Modelos Animais de Doenças , Metástase Neoplásica , Microambiente Tumoral
10.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36995340

RESUMO

Phagocytosis is a key macrophage function, but how phagocytosis shapes tumor-associated macrophage (TAM) phenotypes and heterogeneity in solid tumors remains unclear. Here, we utilized both syngeneic and novel autochthonous lung tumor models in which neoplastic cells express the fluorophore tdTomato (tdTom) to identify TAMs that have phagocytosed neoplastic cells in vivo. Phagocytic tdTompos TAMs upregulated antigen presentation and anti-inflammatory proteins, but downregulated classic proinflammatory effectors compared to tdTomneg TAMs. Single-cell transcriptomic profiling identified TAM subset-specific and common gene expression changes associated with phagocytosis. We uncover a phagocytic signature that is predominated by oxidative phosphorylation (OXPHOS), ribosomal, and metabolic genes, and this signature correlates with worse clinical outcome in human lung cancer. Expression of OXPHOS proteins, mitochondrial content, and functional utilization of OXPHOS were increased in tdTompos TAMs. tdTompos tumor dendritic cells also display similar metabolic changes. Our identification of phagocytic TAMs as a distinct myeloid cell state links phagocytosis of neoplastic cells in vivo with OXPHOS and tumor-promoting phenotypes.


Assuntos
Neoplasias Pulmonares , Macrófagos , Humanos , Macrófagos/metabolismo , Fagocitose/genética , Neoplasias Pulmonares/patologia , Células Mieloides/metabolismo , Estresse Oxidativo , Microambiente Tumoral
11.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778226

RESUMO

Cancer genomes are almost invariably complex with genomic alterations cooperating during each step of carcinogenesis. In cancers that lack a single dominant oncogene mutation, cooperation between the inactivation of multiple tumor suppressor genes can drive tumor initiation and growth. Here, we shed light on how the sequential acquisition of genomic alterations generates oncogene-negative lung tumors. We couple tumor barcoding with combinatorial and multiplexed somatic genome editing to characterize the fitness landscapes of three tumor suppressor genes NF1, RASA1, and PTEN, the inactivation of which jointly drives oncogene-negative lung adenocarcinoma initiation and growth. The fitness landscape was surprisingly accessible, with each additional mutation leading to growth advantage. Furthermore, the fitness landscapes remained fully accessible across backgrounds with additional tumor suppressor mutations. These results suggest that while predicting cancer evolution will be challenging, acquiring the multiple alterations required for the growth of oncogene-negative tumors can be facilitated by the lack of constraints on mutational order.

12.
Nat Cell Biol ; 25(1): 159-169, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36635501

RESUMO

Oncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing. Through a series of CRISPR/Cas9 screens in autochthonous lung cancer models, we show that HRAS and NRAS are suppressors of KRASG12D-driven tumour growth in vivo and confirm these effects in oncogenic KRAS-driven human lung cancer cell lines. Mechanistically, RAS paralogues interact with oncogenic KRAS, suppress KRAS-KRAS interactions, and reduce downstream ERK signalling. Furthermore, HRAS and NRAS mutations identified in oncogenic KRAS-driven human tumours partially abolished this effect. By comparing the tumour-suppressive effects of HRAS and NRAS in oncogenic KRAS- and oncogenic BRAF-driven lung cancer models, we confirm that RAS paralogues are specific suppressors of KRAS-driven lung cancer in vivo. Our study outlines a technological avenue to uncover positive and negative regulators of oncogenic KRAS-driven cancer in a multiplexed manner in vivo and highlights the role RAS paralogue imbalance in oncogenic KRAS-driven lung cancer.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transformação Celular Neoplásica/metabolismo , Transdução de Sinais/genética , Neoplasias Pulmonares/genética , Genes ras , Mutação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
13.
Cell Rep ; 42(1): 111990, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640300

RESUMO

Small cell lung cancer (SCLC) is a lethal form of lung cancer. Here, we develop a quantitative multiplexed approach on the basis of lentiviral barcoding with somatic CRISPR-Cas9-mediated genome editing to functionally investigate candidate regulators of tumor initiation and growth in genetically engineered mouse models of SCLC. We found that naphthalene pre-treatment enhances lentiviral vector-mediated SCLC initiation, enabling high multiplicity of tumor clones for analysis through high-throughput sequencing methods. Candidate drivers of SCLC identified from a meta-analysis across multiple human SCLC genomic datasets were tested using this approach, which defines both positive and detrimental impacts of inactivating 40 genes across candidate pathways on SCLC development. This analysis and subsequent validation in human SCLC cells establish TSC1 in the PI3K-AKT-mTOR pathway as a robust tumor suppressor in SCLC. This approach should illuminate drivers of SCLC, facilitate the development of precision therapies for defined SCLC genotypes, and identify therapeutic targets.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Camundongos , Animais , Humanos , Carcinoma de Pequenas Células do Pulmão/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/patologia , Genes Supressores de Tumor , Genômica
14.
Cell Rep Methods ; 2(9): 100295, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36160047

RESUMO

In a recent issue of Cell, Liu et al. present an innovative mouse model system in which Cre/lox stochastically turns on transgenic expression of one out of up to 100 sgRNAs in somatic cells, creating genetic mosaicism that enables the multiplexed assessment of gene function in vivo.


Assuntos
Integrases , Mosaicismo , Camundongos , Animais , Camundongos Transgênicos , Integrases/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Sistemas CRISPR-Cas
15.
Mol Cell ; 82(16): 3103-3118.e8, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35752172

RESUMO

The development of CRISPR-based barcoding methods creates an exciting opportunity to understand cellular phylogenies. We present a compact, tunable, high-capacity Cas12a barcoding system called dual acting inverted site array (DAISY). We combined high-throughput screening and machine learning to predict and optimize the 60-bp DAISY barcode sequences. After optimization, top-performing barcodes had ∼10-fold increased capacity relative to the best random-screened designs and performed reliably across diverse cell types. DAISY barcode arrays generated ∼12 bits of entropy and ∼66,000 unique barcodes. Thus, DAISY barcodes-at a fraction of the size of Cas9 barcodes-achieved high-capacity barcoding. We coupled DAISY barcoding with single-cell RNA-seq to recover lineages and gene expression profiles from ∼47,000 human melanoma cells. A single DAISY barcode recovered up to ∼700 lineages from one parental cell. This analysis revealed heritable single-cell gene expression and potential epigenetic modulation of memory gene transcription. Overall, Cas12a DAISY barcoding is an efficient tool for investigating cell-state dynamics.


Assuntos
Sistemas CRISPR-Cas , Código de Barras de DNA Taxonômico , Linhagem da Célula/genética , Código de Barras de DNA Taxonômico/métodos , Humanos , Aprendizado de Máquina , Filogenia
16.
Cancer Res ; 82(8): 1589-1602, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35425962

RESUMO

Lung cancer is the leading cause of cancer death worldwide, with lung adenocarcinoma being the most common subtype. Many oncogenes and tumor suppressor genes are altered in this cancer type, and the discovery of oncogene mutations has led to the development of targeted therapies that have improved clinical outcomes. However, a large fraction of lung adenocarcinomas lacks mutations in known oncogenes, and the genesis and treatment of these oncogene-negative tumors remain enigmatic. Here, we perform iterative in vivo functional screens using quantitative autochthonous mouse model systems to uncover the genetic and biochemical changes that enable efficient lung tumor initiation in the absence of oncogene alterations. Generation of hundreds of diverse combinations of tumor suppressor alterations demonstrates that inactivation of suppressors of the RAS and PI3K pathways drives the development of oncogene-negative lung adenocarcinoma. Human genomic data and histology identified RAS/MAPK and PI3K pathway activation as a common feature of an event in oncogene-negative human lung adenocarcinomas. These Onc-negativeRAS/PI3K tumors and related cell lines are vulnerable to pharmacologic inhibition of these signaling axes. These results transform our understanding of this prevalent yet understudied subtype of lung adenocarcinoma. SIGNIFICANCE: To address the large fraction of lung adenocarcinomas lacking mutations in proto-oncogenes for which targeted therapies are unavailable, this work uncovers driver pathways of oncogene-negative lung adenocarcinomas and demonstrates their therapeutic vulnerabilities.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Animais , Genes Supressores de Tumor , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Oncogenes , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
17.
Mol Cell Oncol ; 9(1): 1994328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252550

RESUMO

In vivo modeling combined with CRISPR/Cas9-mediated somatic genome editing has contributed to elucidating the functional importance of specific genetic alterations in human tumors. Our recent work uncovered tumor suppressor pathways that affect EGFR-driven lung tumor growth and sensitivity to tyrosine kinase inhibitors and reflect the mutational landscape and treatment outcomes in the human disease.

18.
Nat Commun ; 13(1): 1090, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228570

RESUMO

LKB1 is among the most frequently altered tumor suppressors in lung adenocarcinoma. Inactivation of Lkb1 accelerates the growth and progression of oncogenic KRAS-driven lung tumors in mouse models. However, the molecular mechanisms by which LKB1 constrains lung tumorigenesis and whether the cancer state that stems from Lkb1 deficiency can be reverted remains unknown. To identify the processes governed by LKB1 in vivo, we generated an allele which enables Lkb1 inactivation at tumor initiation and subsequent Lkb1 restoration in established tumors. Restoration of Lkb1 in oncogenic KRAS-driven lung tumors suppressed proliferation and led to tumor stasis. Lkb1 restoration activated targets of C/EBP transcription factors and drove neoplastic cells from a progenitor-like state to a less proliferative alveolar type II cell-like state. We show that C/EBP transcription factors govern a subset of genes that are induced by LKB1 and depend upon NKX2-1. We also demonstrate that a defining factor of the alveolar type II lineage, C/EBPα, constrains oncogenic KRAS-driven lung tumor growth in vivo. Thus, this key tumor suppressor regulates lineage-specific transcription factors, thereby constraining lung tumor development through enforced differentiation.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética
19.
Cell Rep ; 37(8): 110056, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818551

RESUMO

Statins are among the most commonly prescribed drugs, and around every fourth person above the age of 40 is on statin medication. Therefore, it is of utmost clinical importance to understand the effect of statins on cancer cell plasticity and its consequences to not only patients with cancer but also patients who are on statins. Here, we find that statins induce a partial epithelial-to-mesenchymal transition (EMT) phenotype in cancer cells of solid tumors. Using a comprehensive STRING network analysis of transcriptome, proteome, and phosphoproteome data combined with multiple mechanistic in vitro and functional in vivo analyses, we demonstrate that statins reduce cellular plasticity by enforcing a mesenchymal-like cell state that increases metastatic seeding ability on one side but reduces the formation of (secondary) tumors on the other due to heterogeneous treatment responses. Taken together, we provide a thorough mechanistic overview of the consequences of statin use for each step of cancer development, progression, and metastasis.


Assuntos
Plasticidade Celular/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia
20.
Nat Cell Biol ; 23(8): 915-924, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341533

RESUMO

Metastasis is the leading cause of cancer-related deaths and enables cancer cells to compromise organ function by expanding in secondary sites. Since primary tumours and metastases often share the same constellation of driver mutations, the mechanisms that drive their distinct phenotypes are unclear. Here we show that inactivation of the frequently mutated tumour suppressor gene LKB1 (encoding liver kinase B1) has evolving effects throughout the progression of lung cancer, which leads to the differential epigenetic re-programming of early-stage primary tumours compared with late-stage metastases. By integrating genome-scale CRISPR-Cas9 screening with bulk and single-cell multi-omic analyses, we unexpectedly identify LKB1 as a master regulator of chromatin accessibility in lung adenocarcinoma primary tumours. Using an in vivo model of metastatic progression, we further show that loss of LKB1 activates the early endoderm transcription factor SOX17 in metastases and a metastatic-like sub-population of cancer cells within primary tumours. The expression of SOX17 is necessary and sufficient to drive a second wave of epigenetic changes in LKB1-deficient cells that enhances metastatic ability. Overall, our study demonstrates how the downstream effects of an individual driver mutation can change throughout cancer development, with implications for stage-specific therapeutic resistance mechanisms and the gene regulatory underpinnings of metastatic evolution.


Assuntos
Adenocarcinoma/genética , Cromatina/metabolismo , Neoplasias Pulmonares/genética , Metástase Neoplásica/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Adenocarcinoma/fisiopatologia , Animais , Linhagem Celular Tumoral , Feminino , Proteínas HMGB/metabolismo , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição SOXF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...