Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
2.
Biophys J ; 122(20): 4042-4056, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37705243

RESUMO

Early afterdepolarizations (EADs) are action potential (AP) repolarization abnormalities that can trigger lethal arrhythmias. Simulations using biophysically detailed cardiac myocyte models can reveal how model parameters influence the probability of these cellular arrhythmias; however, such analyses can pose a huge computational burden. We have previously developed a highly simplified approach in which logistic regression models (LRMs) map parameters of complex cell models to the probability of ectopic beats. Here, we extend this approach to predict the probability of EADs (P(EAD)) as a mechanistic metric of arrhythmic risk. We use the LRM to investigate how changes in parameters of the slow-activating delayed rectifier current (IKs) affect P(EAD) for 17 different long QT syndrome type 1 (LQTS1) mutations. In this LQTS1 clinical arrhythmic risk prediction task, we compared P(EAD) for these 17 mutations with two other recently published model-based arrhythmia risk metrics (AP morphology metric across populations of myocyte models and transmural repolarization prolongation based on a one-dimensional [1D] tissue-level model). These model-based risk metrics yield similar prediction performance; however, each fails to stratify clinical risk for a significant number of the 17 studied LQTS1 mutations. Nevertheless, an interpretable ensemble model using multivariate linear regression built by combining all of these model-based risk metrics successfully predicts the clinical risk of 17 mutations. These results illustrate the potential of computational approaches in arrhythmia risk prediction.


Assuntos
Síndrome de Romano-Ward , Humanos , Síndrome de Romano-Ward/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Mutação , Probabilidade
3.
PLoS One ; 18(8): e0289763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540703

RESUMO

RATIONALE: Acute respiratory failure is a life-threatening clinical outcome in critically ill pediatric patients. In severe cases, patients can require mechanical ventilation (MV) for survival. Early recognition of these patients can potentially help clinicians alter the clinical course and lead to improved outcomes. OBJECTIVES: To build a data-driven model for early prediction of the need for mechanical ventilation in pediatric intensive care unit (PICU) patients. METHODS: The study consists of a single-center retrospective observational study on a cohort of 13,651 PICU patients admitted between 1/01/2010 and 5/15/2018 with a prevalence of 8.06% for MV due to respiratory failure. XGBoost (extreme gradient boosting) and a convolutional neural network (CNN) using medication history were used to develop a prediction model that could yield a time-varying "risk-score"-a continuous probability of whether a patient will receive MV-and an ideal global threshold was calculated from the receiver operating characteristics (ROC) curve. The early prediction point (EPP) was the first time the risk-score surpassed the optimal threshold, and the interval between the EPP and the start of the MV was the early warning period (EWT). Spectral clustering identified patient groups based on risk-score trajectories after EPP. RESULTS: A clinical and medication history-based model achieved a 0.89 area under the ROC curve (AUROC), 0.6 sensitivity, 0.95 specificity, 0.55 positive predictive value (PPV), and 0.95 negative predictive value (NPV). Early warning time (EWT) median [inter-quartile range] of this model was 9.9[4.2-69.2] hours. Clustering risk-score trajectories within a six-hour window after the early prediction point (EPP) established three patient groups, with the highest risk group's PPV being 0.92. CONCLUSIONS: This study uses a unique method to extract and apply medication history information, such as time-varying variables, to identify patients who may need mechanical ventilation for respiratory failure and provide an early warning period to avert it.


Assuntos
Respiração Artificial , Insuficiência Respiratória , Humanos , Criança , Unidades de Terapia Intensiva Pediátrica , Estudos Retrospectivos , Curva ROC , Insuficiência Respiratória/terapia , Unidades de Terapia Intensiva
4.
Front Physiol ; 14: 1125991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123253

RESUMO

Introduction: Mechanical ventilation is a life-saving treatment in the Intensive Care Unit (ICU), but often causes patients to be at risk of further respiratory complication. We created a statistical model utilizing electronic health record and physiologic vitals data to predict the Center for Disease Control and Prevention (CDC) defined Ventilator Associated Complications (VACs). Further, we evaluated the effect of data temporal resolution and feature generation method choice on the accuracy of such a constructed model. Methods: We constructed a random forest model to predict occurrence of VACs using health records and chart events from adult patients in the Medical Information Mart for Intensive Care III (MIMIC-III) database. We trained the machine learning models on two patient populations of 1921 and 464 based on low and high frequency data availability. Model features were generated using both basic statistical summaries and tsfresh, a python library that generates a large number of derived time-series features. Classification to determine whether a patient will experience VAC one hour after 35 h of ventilation was performed using a random forest classifier. Two different sample spaces conditioned on five varying feature extraction techniques were evaluated to identify the most optimal selection of features resulting in the best VAC discrimination. Each dataset was assessed using K-folds cross-validation (k = 10), giving average area under the receiver operating characteristic curves (AUROCs) and accuracies. Results: After feature selection, hyperparameter tuning, and feature extraction, the best performing model used automatically generated features on high frequency data and achieved an average AUROC of 0.83 ± 0.11 and an average accuracy of 0.69 ± 0.10. Discussion: Results show the potential viability of predicting VACs using machine learning, and indicate that higher-resolution data and the larger feature set generated by tsfresh yield better AUROCs compared to lower-resolution data and manual statistical features.

5.
Anesthesiology ; 138(3): 299-311, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538354

RESUMO

BACKGROUND: Delirium poses significant risks to patients, but countermeasures can be taken to mitigate negative outcomes. Accurately forecasting delirium in intensive care unit (ICU) patients could guide proactive intervention. Our primary objective was to predict ICU delirium by applying machine learning to clinical and physiologic data routinely collected in electronic health records. METHODS: Two prediction models were trained and tested using a multicenter database (years of data collection 2014 to 2015), and externally validated on two single-center databases (2001 to 2012 and 2008 to 2019). The primary outcome variable was delirium defined as a positive Confusion Assessment Method for the ICU screen, or an Intensive Care Delirium Screening Checklist of 4 or greater. The first model, named "24-hour model," used data from the 24 h after ICU admission to predict delirium any time afterward. The second model designated "dynamic model," predicted the onset of delirium up to 12 h in advance. Model performance was compared with a widely cited reference model. RESULTS: For the 24-h model, delirium was identified in 2,536 of 18,305 (13.9%), 768 of 5,299 (14.5%), and 5,955 of 36,194 (11.9%) of patient stays, respectively, in the development sample and two validation samples. For the 12-h lead time dynamic model, delirium was identified in 3,791 of 22,234 (17.0%), 994 of 6,166 (16.1%), and 5,955 of 28,440 (20.9%) patient stays, respectively. Mean area under the receiver operating characteristics curve (AUC) (95% CI) for the first 24-h model was 0.785 (0.769 to 0.801), significantly higher than the modified reference model with AUC of 0.730 (0.704 to 0.757). The dynamic model had a mean AUC of 0.845 (0.831 to 0.859) when predicting delirium 12 h in advance. Calibration was similar in both models (mean Brier Score [95% CI] 0.102 [0.097 to 0.108] and 0.111 [0.106 to 0.116]). Model discrimination and calibration were maintained when tested on the validation datasets. CONCLUSIONS: Machine learning models trained with routinely collected electronic health record data accurately predict ICU delirium, supporting dynamic time-sensitive forecasting.


Assuntos
Delírio , Humanos , Delírio/diagnóstico , Unidades de Terapia Intensiva , Cuidados Críticos/métodos , Hospitalização , Aprendizado de Máquina
6.
Cells ; 11(12)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35741007

RESUMO

Cardiovascular disease is the leading cause of death worldwide due in a large part to arrhythmia. In order to understand how calcium dynamics play a role in arrhythmogenesis, normal and dysfunctional Ca2+ signaling in a subcellular, cellular, and tissued level is examined using cardiac ventricular myocytes at a high temporal and spatial resolution using multiscale computational modeling. Ca2+ sparks underlie normal excitation-contraction coupling. However, under pathological conditions, Ca2+ sparks can combine to form Ca2+ waves. These propagating elevations of (Ca2+)i can activate an inward Na+-Ca2+ exchanger current (INCX) that contributes to early after-depolarization (EADs) and delayed after-depolarizations (DADs). However, how cellular currents lead to full depolarization of the myocardium and how they initiate extra systoles is still not fully understood. This study explores how many myocytes must be entrained to initiate arrhythmogenic depolarizations in biophysically detailed computational models. The model presented here suggests that only a small number of myocytes must activate in order to trigger an arrhythmogenic propagating action potential. These conditions were examined in 1-D, 2-D, and 3-D considering heart geometry. The depolarization of only a few hundred ventricular myocytes is required to trigger an ectopic depolarization. The number decreases under disease conditions such as heart failure. Furthermore, in geometrically restricted parts of the heart such as the thin muscle strands found in the trabeculae and papillary muscle, the number of cells needed to trigger a propagating depolarization falls even further to less than ten myocytes.


Assuntos
Sinalização do Cálcio , Acoplamento Excitação-Contração , Animais , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio/fisiologia , Miócitos Cardíacos/metabolismo , Ratos , Trocador de Sódio e Cálcio/metabolismo
7.
Anaesth Crit Care Pain Med ; 41(1): 101015, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968747

RESUMO

BACKGROUND: There is an unmet need for timely and reliable prediction of post-cardiac arrest (CA) clinical trajectories. We hypothesized that physiological time series (PTS) data recorded on the first day of intensive care would contribute significantly to discrimination of outcomes at discharge. PATIENTS AND METHODS: Adult patients in the multicenter eICU database who were mechanically ventilated after resuscitation from out-of-hospital CA were included. Outcomes of interest were survival, neurological status based on Glasgow motor subscore (mGCS) and surrogate functional status based on discharge location (DL), at hospital discharge. Three machine learning predictive models were trained, one with features from the electronic health records (EHR), the second using features derived from PTS collected in the first 24 h after ICU admission (PTS24), and the third combining PTS24 and EHR. Model performances were compared, and the best performing model was externally validated in the MIMIC-III dataset. RESULTS: Data from 2216 admissions were included in the analysis. Discrimination of prediction models combining EHR and PTS24 features was higher than models using either EHR or PTS24 for prediction of survival (AUROC 0.83, 0.82 and 0.79 respectively), neurological outcome (0.87, 0.86 and 0.79 respectively), and DL (0.80, 0.78 and 0.76 respectively). External validation in MIMIC-III (n = 86) produced similar model performance. Feature analysis suggested prognostic significance of previously unknown EHR and PTS24 variables. CONCLUSION: These results indicate that physiological data recorded in the early phase after CA resuscitation contain signatures that are linked to post-CA outcome. Additionally, they attest to the effectiveness of ML for post-CA predictive modeling.


Assuntos
Aprendizado de Máquina , Parada Cardíaca Extra-Hospitalar , Adulto , Hospitalização , Humanos , Prognóstico , Fatores de Tempo
8.
PLoS Comput Biol ; 17(12): e1009712, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932550

RESUMO

Hypoxemia is a significant driver of mortality and poor clinical outcomes in conditions such as brain injury and cardiac arrest in critically ill patients, including COVID-19 patients. Given the host of negative clinical outcomes attributed to hypoxemia, identifying patients likely to experience hypoxemia would offer valuable opportunities for early and thus more effective intervention. We present SWIFT (SpO2 Waveform ICU Forecasting Technique), a deep learning model that predicts blood oxygen saturation (SpO2) waveforms 5 and 30 minutes in the future using only prior SpO2 values as inputs. When tested on novel data, SWIFT predicts more than 80% and 60% of hypoxemic events in critically ill and COVID-19 patients, respectively. SWIFT also predicts SpO2 waveforms with average MSE below .0007. SWIFT predicts both occurrence and magnitude of potential hypoxemic events 30 minutes in the future, allowing it to be used to inform clinical interventions, patient triaging, and optimal resource allocation. SWIFT may be used in clinical decision support systems to inform the management of critically ill patients during the COVID-19 pandemic and beyond.


Assuntos
COVID-19/fisiopatologia , Estado Terminal , Aprendizado Profundo , Hipóxia/sangue , Saturação de Oxigênio , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Unidades de Terapia Intensiva , Pandemias , SARS-CoV-2/isolamento & purificação
9.
Front Pediatr ; 9: 734753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820341

RESUMO

Background: High flow nasal cannula (HFNC) is commonly used as non-invasive respiratory support in critically ill children. There are limited data to inform consensus on optimal device parameters, determinants of successful patient response, and indications for escalation of support. Clinical scores, such as the respiratory rate-oxygenation (ROX) index, have been described as a means to predict HFNC non-response, but are limited to evaluating for escalations to invasive mechanical ventilation (MV). In the presence of apparent HFNC non-response, a clinician may choose to increase the HFNC flow rate to hypothetically prevent further respiratory deterioration, transition to an alternative non-invasive interface, or intubation for MV. To date, no models have been assessed to predict subsequent escalations of HFNC flow rates after HFNC initiation. Objective: To evaluate the abilities of tree-based machine learning algorithms to predict HFNC flow rate escalations. Methods: We performed a retrospective, cohort study assessing children admitted for acute respiratory failure under 24 months of age placed on HFNC in the Johns Hopkins Children's Center pediatric intensive care unit from January 2019 through January 2020. We excluded encounters with gaps in recorded clinical data, encounters in which MV treatment occurred prior to HFNC, and cases electively intubated in the operating room. The primary study outcome was discriminatory capacity of generated machine learning algorithms to predict HFNC flow rate escalations as compared to each other and ROX indices using area under the receiver operating characteristic (AUROC) analyses. In an exploratory fashion, model feature importance rankings were assessed by comparing Shapley values. Results: Our gradient boosting model with a time window of 8 h and lead time of 1 h before HFNC flow rate escalation achieved an AUROC with a 95% confidence interval of 0.810 ± 0.003. In comparison, the ROX index achieved an AUROC of 0.525 ± 0.000. Conclusion: In this single-center, retrospective cohort study assessing children under 24 months of age receiving HFNC for acute respiratory failure, tree-based machine learning models outperformed the ROX index in predicting subsequent flow rate escalations. Further validation studies are needed to ensure generalizability for bedside application.

10.
PLoS Comput Biol ; 17(10): e1009536, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665814

RESUMO

Ectopic beats (EBs) are cellular arrhythmias that can trigger lethal arrhythmias. Simulations using biophysically-detailed cardiac myocyte models can reveal how model parameters influence the probability of these cellular arrhythmias, however such analyses can pose a huge computational burden. Here, we develop a simplified approach in which logistic regression models (LRMs) are used to define a mapping between the parameters of complex cell models and the probability of EBs (P(EB)). As an example, in this study, we build an LRM for P(EB) as a function of the initial value of diastolic cytosolic Ca2+ concentration ([Ca2+]iini), the initial state of sarcoplasmic reticulum (SR) Ca2+ load ([Ca2+]SRini), and kinetic parameters of the inward rectifier K+ current (IK1) and ryanodine receptor (RyR). This approach, which we refer to as arrhythmia sensitivity analysis, allows for evaluation of the relationship between these arrhythmic event probabilities and their associated parameters. This LRM is also used to demonstrate how uncertainties in experimentally measured values determine the uncertainty in P(EB). In a study of the role of [Ca2+]SRini uncertainty, we show a special property of the uncertainty in P(EB), where with increasing [Ca2+]SRini uncertainty, P(EB) uncertainty first increases and then decreases. Lastly, we demonstrate that IK1 suppression, at the level that occurs in heart failure myocytes, increases P(EB).


Assuntos
Arritmias Cardíacas/fisiopatologia , Biologia Computacional/métodos , Modelos Cardiovasculares , Modelos Estatísticos , Miócitos Cardíacos/fisiologia , Animais , Cálcio/metabolismo , Cães , Retículo Sarcoplasmático/fisiologia , Incerteza
11.
Front Pediatr ; 9: 711104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485201

RESUMO

Objective: The objective of the study is to build models for early prediction of risk for developing multiple organ dysfunction (MOD) in pediatric intensive care unit (PICU) patients. Design: The design of the study is a retrospective observational cohort study. Setting: The setting of the study is at a single academic PICU at the Johns Hopkins Hospital, Baltimore, MD. Patients: The patients included in the study were <18 years of age admitted to the PICU between July 2014 and October 2015. Measurements and main results: Organ dysfunction labels were generated every minute from preceding 24-h time windows using the International Pediatric Sepsis Consensus Conference (IPSCC) and Proulx et al. MOD criteria. Early MOD prediction models were built using four machine learning methods: random forest, XGBoost, GLMBoost, and Lasso-GLM. An optimal threshold learned from training data was used to detect high-risk alert events (HRAs). The early prediction models from all methods achieved an area under the receiver operating characteristics curve ≥0.91 for both IPSCC and Proulx criteria. The best performance in terms of maximum F1-score was achieved with random forest (sensitivity: 0.72, positive predictive value: 0.70, F1-score: 0.71) and XGBoost (sensitivity: 0.8, positive predictive value: 0.81, F1-score: 0.81) for IPSCC and Proulx criteria, respectively. The median early warning time was 22.7 h for random forest and 37 h for XGBoost models for IPSCC and Proulx criteria, respectively. Applying spectral clustering on risk-score trajectories over 24 h following early warning provided a high-risk group with ≥0.93 positive predictive value. Conclusions: Early predictions from risk-based patient monitoring could provide more than 22 h of lead time for MOD onset, with ≥0.93 positive predictive value for a high-risk group identified pre-MOD.

12.
Crit Care Explor ; 3(6): e0442, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34151278

RESUMO

OBJECTIVES: Sepsis and septic shock are leading causes of in-hospital mortality. Timely treatment is crucial in improving patient outcome, yet treatment delays remain common. Early prediction of those patients with sepsis who will progress to its most severe form, septic shock, can increase the actionable window for interventions. We aim to extend a time-evolving risk score, previously developed in adult patients, to predict pediatric sepsis patients who are likely to develop septic shock before its onset, and to determine whether or not these risk scores stratify into groups with distinct temporal evolution once this prediction is made. DESIGN: Retrospective cohort study. SETTING: Academic medical center from July 1, 2016, to December 11, 2020. PATIENTS: Six-thousand one-hundred sixty-one patients under 18 admitted to the Johns Hopkins Hospital PICU. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We trained risk models to predict impending transition into septic shock and compute time-evolving risk scores representative of a patient's probability of developing septic shock. We obtain early prediction performance of 0.90 area under the receiver operating curve, 43% overall positive predictive value, patient-specific positive predictive value as high as 62%, and an 8.9-hour median early warning time using Sepsis-3 labels based on age-adjusted Sequential Organ Failure Assessment score. Using spectral clustering, we stratified pediatric sepsis patients into two clusters differing in septic shock prevalence, mortality, and proportion of patients adequately fluid resuscitated. CONCLUSIONS: We demonstrate the applicability of our methodology for early prediction and stratification for risk of septic shock in pediatric sepsis patients. Through analyses of risk score evolution over time, we corroborate our past finding of an abrupt transition preceding onset of septic shock in children and are able to stratify pediatric sepsis patients using their risk score trajectories into low and high-risk categories.

13.
medRxiv ; 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33688661

RESUMO

Hypoxemia is a significant driver of mortality and poor clinical outcomes in conditions such as brain injury and cardiac arrest in critically ill patients, including COVID-19 patients. Given the host of negative clinical outcomes attributed to hypoxemia, identifying patients likely to experience hypoxemia would offer valuable opportunities for early and thus more effective intervention. We present SWIFT (SpO 2 W aveform I CU F orecasting T echnique), a deep learning model that predicts blood oxygen saturation (SpO 2 ) waveforms 5 and 30 minutes in the future using only prior SpO 2 values as inputs. When tested on novel data, SWIFT predicts more than 80% and 60% of hypoxemic events in critically ill and COVID-19 patients, respectively. SWIFT also predicts SpO 2 waveforms with average MSE below .0007. SWIFT provides information on both occurrence and magnitude of potential hypoxemic events 30 minutes in advance, allowing it to be used to inform clinical interventions, patient triaging, and optimal resource allocation. SWIFT may be used in clinical decision support systems to inform the management of critically ill patients during the COVID-19 pandemic and beyond.

14.
Elife ; 92020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32959779

RESUMO

Sepsis is not a monolithic disease, but a loose collection of symptoms with diverse outcomes. Thus, stratification and subtyping of sepsis patients is of great importance. We examine the temporal evolution of patient state using our previously-published method for computing risk of transition from sepsis into septic shock. Risk trajectories diverge into four clusters following early prediction of septic shock, stratifying by outcome: the highest-risk and lowest-risk groups have a 76.5% and 10.4% prevalence of septic shock, and 43% and 18% mortality, respectively. These clusters differ also in treatments received and median time to shock onset. Analyses reveal the existence of a rapid (30-60 min) transition in risk at the time of threshold crossing. We hypothesize that this transition occurs as a result of the failure of compensatory biological systems to cope with infection, resulting in a bifurcation of low to high risk. Such a collapse, we believe, represents the true onset of septic shock. Thus, this rapid elevation in risk represents a potential new data-driven definition of septic shock.


Assuntos
Medição de Risco/métodos , Sepse , Análise por Conglomerados , Comorbidade , Humanos , Sepse/classificação , Sepse/epidemiologia , Sepse/mortalidade , Sepse/terapia , Choque Séptico , Tempo para o Tratamento , Resultado do Tratamento
16.
Sci Rep ; 9(1): 6145, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992534

RESUMO

Septic shock is a life-threatening condition in which timely treatment substantially reduces mortality. Reliable identification of patients with sepsis who are at elevated risk of developing septic shock therefore has the potential to save lives by opening an early window of intervention. We hypothesize the existence of a novel clinical state of sepsis referred to as the "pre-shock" state, and that patients with sepsis who enter this state are highly likely to develop septic shock at some future time. We apply three different machine learning techniques to the electronic health record data of 15,930 patients in the MIMIC-III database to test this hypothesis. This novel paradigm yields improved performance in identifying patients with sepsis who will progress to septic shock, as defined by Sepsis- 3 criteria, with the best method achieving a 0.93 area under the receiver operating curve, 88% sensitivity, 84% specificity, and median early warning time of 7 hours. Additionally, we introduce the notion of patient-specific positive predictive value, assigning confidence to individual predictions, and achieving values as high as 91%. This study demonstrates that early prediction of impending septic shock, and thus early intervention, is possible many hours in advance.


Assuntos
Choque Séptico/diagnóstico , Registros Eletrônicos de Saúde , Feminino , Humanos , Unidades de Terapia Intensiva , Aprendizado de Máquina , Masculino , Prognóstico
17.
J Mol Cell Cardiol ; 128: 145-157, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30731085

RESUMO

Cardiac sodium (Na+) potassium ATPase (NaK) pumps, neuronal sodium channels (INa), and sodium calcium (Ca2+) exchangers (NCX1) may co-localize to form a Na+ microdomain. It remains controversial as to whether neuronal INa contributes to local Na+ accumulation, resulting in reversal of nearby NCX1 and influx of Ca2+ into the cell. Therefore, there has been great interest in the possible roles of a Na+ microdomain in cardiac Ca2+-induced Ca2+ release (CICR). In addition, the important role of co-localization of NaK and NCX1 in regulating localized Na+ and Ca2+ levels and CICR in ankyrin-B deficient (ankyrin-B+/-) cardiomyocytes has been examined in many recent studies. Altered Na+ dynamics may contribute to the appearance of arrhythmias, but the mechanisms underlying this relationship remain unclear. In order to investigate this, we present a mechanistic canine cardiomyocyte model which reproduces independent local dyadic junctional SR (JSR) Ca2+ release events underlying cell-wide excitation-contraction coupling, as well as a three-dimensional super-resolution model of the Ca2+ spark that describes local Na+ dynamics as governed by NaK pumps, neuronal INa, and NCX1. The model predicts the existence of Na+ sparks, which are generated by NCX1 and exhibit significantly slower dynamics as compared to Ca2+ sparks. Moreover, whole-cell simulations indicate that neuronal INa in the cardiac dyad plays a key role during the systolic phase. Rapid inward neuronal INa can elevate dyadic [Na+] to 35-40 mM, which drives reverse-mode NCX1 transport, and therefore promotes Ca2+ entry into the dyad, enhancing the trigger for JSR Ca2+ release. The specific role of decreased co-localization of NaK and NCX1 in ankyrin-B+/- cardiomyocytes was examined. Model results demonstrate that a reduction in the local NCX1- and NaK-mediated regulation of dyadic [Ca2+] and [Na+] results in an increase in Ca2+ spark activity during isoproterenol stimulation, which in turn stochastically activates NCX1 in the dyad. This alteration in NCX1/NaK co-localization interrupts the balance between NCX1 and NaK currents in a way that leads to enhanced depolarizing inward current during the action potential plateau, which ultimately leads to a higher probability of L-type Ca2+ channel reopening and arrhythmogenic early-afterdepolarizations.


Assuntos
Anquirinas/genética , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/genética , ATPase Trocadora de Sódio-Potássio/genética , Potenciais de Ação/genética , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/genética , Cães , Acoplamento Excitação-Contração/genética , Humanos , Miócitos Cardíacos/patologia , Potássio/metabolismo , Sódio/metabolismo , Canais de Sódio/genética
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6103-6108, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947237

RESUMO

Sepsis and septic shock are major concerns in public health as the leading contributors to hospital mortality and cost of treatment in the United States. Early treatment is instrumental for improving patient outcome; to this end, algorithmic methods for early prediction of septic shock have been developed using electronic health record data, with the goal of decreasing treatment delay. We extend a previously-developed method, using a gradient boosting algorithm (XG-Boost) to compute a time-evolving risk of impending transition into septic shock, by combining physiological data from the electronic health record with features obtained from natural language processing of clinical note data. We compare two different methods for generating natural language processing features, with the best method obtaining improved performance of 0.92 AUC, 84% sensitivity, 82% specificity, 49% positive predictive value, and a median early warning time of 7.0 hours. This degree of early warning is sufficient to enable intervention many hours in advance of septic shock onset, with the improved prediction performance of this method resulting in fewer false alarms and thus more actionable predictions.


Assuntos
Choque Séptico , Humanos , Unidades de Terapia Intensiva , Processamento de Linguagem Natural , Estudos Retrospectivos
19.
J Gen Physiol ; 150(12): 1688-1701, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30470716

RESUMO

L-type calcium channels (LTCCs) are critical elements of normal cardiac function, playing a major role in orchestrating cardiac electrical activity and initiating downstream signaling processes. LTCCs thus use feedback mechanisms to precisely control calcium (Ca2+) entry into cells. Of these, Ca2+-dependent inactivation (CDI) is significant because it shapes cardiac action potential duration and is essential for normal cardiac rhythm. This important form of regulation is mediated by a resident Ca2+ sensor, calmodulin (CaM), which is comprised of two lobes that are each capable of responding to spatially distinct Ca2+ sources. Disruption of CaM-mediated CDI leads to severe forms of long-QT syndrome (LQTS) and life-threatening arrhythmias. Thus, a model capable of capturing the nuances of CaM-mediated CDI would facilitate increased understanding of cardiac (patho)physiology. However, one critical barrier to achieving a detailed kinetic model of CDI has been the lack of quantitative data characterizing CDI as a function of Ca2+ This data deficit stems from the experimental challenge of uncoupling the effect of channel gating on Ca2+ entry. To overcome this obstacle, we use photo-uncaging of Ca2+ to deliver a measurable Ca2+ input to CaM/LTCCs, while simultaneously recording CDI. Moreover, we use engineered CaMs with Ca2+ binding restricted to a single lobe, to isolate the kinetic response of each lobe. These high-resolution measurements enable us to build mathematical models for each lobe of CaM, which we use as building blocks for a full-scale bilobal model of CDI. Finally, we use this model to probe the pathogenesis of LQTS associated with mutations in CaM (calmodulinopathies). Each of these models accurately recapitulates the kinetics and steady-state properties of CDI in both physiological and pathological states, thus offering powerful new insights into the mechanistic alterations underlying cardiac arrhythmias.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Modelos Químicos , Calmodulina/genética , Humanos , Síndrome do QT Longo/genética
20.
PLoS Comput Biol ; 13(11): e1005783, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29145393

RESUMO

Ectopic heartbeats can trigger reentrant arrhythmias, leading to ventricular fibrillation and sudden cardiac death. Such events have been attributed to perturbed Ca2+ handling in cardiac myocytes leading to spontaneous Ca2+ release and delayed afterdepolarizations (DADs). However, the ways in which perturbation of specific molecular mechanisms alters the probability of ectopic beats is not understood. We present a multiscale model of cardiac tissue incorporating a biophysically detailed three-dimensional model of the ventricular myocyte. This model reproduces realistic Ca2+ waves and DADs driven by stochastic Ca2+ release channel (RyR) gating and is used to study mechanisms of DAD variability. In agreement with previous experimental and modeling studies, key factors influencing the distribution of DAD amplitude and timing include cytosolic and sarcoplasmic reticulum Ca2+ concentrations, inwardly rectifying potassium current (IK1) density, and gap junction conductance. The cardiac tissue model is used to investigate how random RyR gating gives rise to probabilistic triggered activity in a one-dimensional myocyte tissue model. A novel spatial-average filtering method for estimating the probability of extreme (i.e. rare, high-amplitude) stochastic events from a limited set of spontaneous Ca2+ release profiles is presented. These events occur when randomly organized clusters of cells exhibit synchronized, high amplitude Ca2+ release flux. It is shown how reduced IK1 density and gap junction coupling, as observed in heart failure, increase the probability of extreme DADs by multiple orders of magnitude. This method enables prediction of arrhythmia likelihood and its modulation by alterations of other cellular mechanisms.


Assuntos
Arritmias Cardíacas/fisiopatologia , Simulação por Computador , Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Miócitos Cardíacos/patologia , Animais , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Cães , Ventrículos do Coração/metabolismo , Potenciais da Membrana , Miócitos Cardíacos/metabolismo , Probabilidade , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...