Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0035024, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682906

RESUMO

Enteric pathogens such as Salmonella enterica serovar Typhimurium experience spatial and temporal changes to the metabolic landscape throughout infection. Host reactive oxygen and nitrogen species non-enzymatically convert monosaccharides to alpha hydroxy acids, including L-tartrate. Salmonella utilizes L-tartrate early during infection to support fumarate respiration, while L-tartrate utilization ceases at later time points due to the increased availability of exogenous electron acceptors such as tetrathionate, nitrate, and oxygen. It remains unknown how Salmonella regulates its gene expression to metabolically adapt to changing nutritional environments. Here, we investigated how the transcriptional regulation for L-tartrate metabolism in Salmonella is influenced by infection-relevant cues. L-tartrate induces the transcription of ttdBAU, genes involved in L-tartrate utilization. L-tartrate metabolism is negatively regulated by two previously uncharacterized transcriptional regulators TtdV (STM3357) and TtdW (STM3358), and both TtdV and TtdW are required for the sensing of L-tartrate. The electron acceptors nitrate, tetrathionate, and oxygen repress ttdBAU transcription via the two-component system ArcAB. Furthermore, the regulation of L-tartrate metabolism is required for optimal fitness in a mouse model of Salmonella-induced colitis. TtdV, TtdW, and ArcAB allow for the integration of two cues, i.e., substrate availability and availability of exogenous electron acceptors, to control L-tartrate metabolism. Our findings provide novel insights into how Salmonella prioritizes the utilization of different electron acceptors for respiration as it experiences transitional nutrient availability throughout infection. IMPORTANCE: Bacterial pathogens must adapt their gene expression profiles to cope with diverse environments encountered during infection. This coordinated process is carried out by the integration of cues that the pathogen senses to fine-tune gene expression in a spatiotemporal manner. Many studies have elucidated the regulatory mechanisms of how Salmonella sense metabolites in the gut to activate or repress its virulence program; however, our understanding of how Salmonella coordinates its gene expression to maximize the utilization of carbon and energy sources found in transitional nutrient niches is not well understood. In this study, we discovered how Salmonella integrates two infection-relevant cues, substrate availability and exogenous electron acceptors, to control L-tartrate metabolism. From our experiments, we propose a model for how L-tartrate metabolism is regulated in response to different metabolic cues in addition to characterizing two previously unknown transcriptional regulators. This study expands our understanding of how microbes combine metabolic cues to enhance fitness during infection.

2.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370731

RESUMO

Enteric pathogens such as Salmonella enterica serovar Typhimurium experience spatial and temporal changes to the metabolic landscape throughout infection. Host reactive oxygen and nitrogen species non-enzymatically convert monosaccharides to alpha hydroxy acids, including L-tartrate. Salmonella utilizes L-tartrate early during infection to support fumarate respiration, while L-tartrate utilization ceases at later time points due to the increased availability of exogenous electron acceptors such as tetrathionate, nitrate, and oxygen. It remains unknown how Salmonella regulates its gene expression to metabolically adapt to changing nutritional environments. Here, we investigated how the transcriptional regulation for L-tartrate metabolism in Salmonella is influenced by infection-relevant cues. L-tartrate induces the transcription of ttdBAU, genes involved in L-tartrate utilization. L-tartrate metabolism is negatively regulated by two previously uncharacterized transcriptional regulators TtdV (STM3357) and TtdW (STM3358), and both TtdV and TtdW are required for sensing of L-tartrate. The electron acceptors nitrate, tetrathionate, and oxygen repress ttdBAU transcription via the two-component system ArcAB. Furthermore, regulation of L-tartrate metabolism is required for optimal fitness in a mouse model of Salmonella-induced colitis. TtdV, TtdW, and ArcAB allow for the integration of two cues, substrate availability and availability of exogenous electron acceptors, to control L-tartrate metabolism. Our findings provide novel insights into how Salmonella prioritizes utilization of different electron acceptors for respiration as it experiences transitional nutrient availability throughout infection.

3.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106073

RESUMO

Louis Pasteur's experiments on tartaric acid laid the foundation for our understanding of molecular chirality, but major questions remain. By comparing the optical activity of naturally-occurring tartaric acid with chemically-synthesized paratartaric acid, Pasteur realized that naturally-occurring tartaric acid contained only L-tartaric acid while paratartaric acid consisted of a racemic mixture of D- and L-tartaric acid. Curiously, D-tartaric acid has no known natural source, yet several gut bacteria specifically degrade D-tartaric acid. Here, we investigated the oxidation of monosaccharides by inflammatory reactive oxygen and nitrogen species. We found that this reaction yields an array of alpha hydroxy carboxylic acids, including tartaric acid isomers. Utilization of inflammation- derived D- and L-tartaric acid enhanced colonization by Salmonella Typhimurium and E. coli in murine models of gut inflammation. Our findings suggest that byproducts of inflammatory radical metabolism, such as tartrate and other alpha hydroxy carboxylic acids, create transient nutrient niches for enteric pathogens and other potentially harmful bacteria. Furthermore, this work illustrates that inflammatory radicals generate a zoo of molecules, some of which may erroneously presumed to be xenobiotics.

4.
mBio ; 14(4): e0092123, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37498116

RESUMO

Salmonella enterica serovar Typhimurium induces intestinal inflammation to create a niche that fosters the outgrowth of the pathogen over the gut microbiota. Under inflammatory conditions, Salmonella utilizes terminal electron acceptors generated as byproducts of intestinal inflammation to generate cellular energy through respiration. However, the electron donating reactions in these electron transport chains are poorly understood. Here, we investigated how formate utilization through the respiratory formate dehydrogenase-N (FdnGHI) and formate dehydrogenase-O (FdoGHI) contribute to gut colonization of Salmonella. Both enzymes fulfilled redundant roles in enhancing fitness in a mouse model of Salmonella-induced colitis, and coupled to tetrathionate, nitrate, and oxygen respiration. The formic acid utilized by Salmonella during infection was generated by its own pyruvate-formate lyase as well as the gut microbiota. Transcription of formate dehydrogenases and pyruvate-formate lyase was significantly higher in bacteria residing in the mucus layer compared to the lumen. Furthermore, formate utilization conferred a more pronounced fitness advantage in the mucus, indicating that formate production and degradation occurred predominantly in the mucus layer. Our results provide new insights into how Salmonella adapts its energy metabolism to the local microenvironment in the gut. IMPORTANCE Bacterial pathogens must not only evade immune responses but also adapt their metabolism to successfully colonize their host. The microenvironments encountered by enteric pathogens differ based on anatomical location, such as small versus large intestine, spatial stratification by host factors, such as mucus layer and antimicrobial peptides, and distinct commensal microbial communities that inhabit these microenvironments. Our understanding of how Salmonella populations adapt its metabolism to different environments in the gut is incomplete. In the current study, we discovered that Salmonella utilizes formate as an electron donor to support respiration, and that formate oxidation predominantly occurs in the mucus layer. Our experiments suggest that spatially distinct Salmonella populations in the mucus layer and the lumen differ in their energy metabolism. Our findings enhance our understanding of the spatial nature of microbial metabolism and may have implications for other enteric pathogens as well as commensal host-associated microbial communities.


Assuntos
Liases , Salmonelose Animal , Animais , Camundongos , Salmonella typhimurium/metabolismo , Sorogrupo , Salmonelose Animal/microbiologia , Bactérias , Inflamação , Formiatos/metabolismo , Muco , Piruvatos/metabolismo , Liases/metabolismo
5.
mBio ; 14(1): e0244422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475774

RESUMO

Chicks are ideal to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Taxonomic/metagenomic analyses captured the development of the chick microbiota in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm) during development. Taxonomic analysis suggests that colonization by the chicken microbiota takes place in several waves. The cecal microbiota stabilizes at day 12 posthatch with prominent Gammaproteobacteria and Clostridiales. Introduction of S. Typhimurium at day 4 posthatch disrupted the expected waves of intestinal colonization. Taxonomic and metagenomic shotgun sequencing analyses allowed us to identify species present in uninfected chicks. Untargeted metabolomics suggested different metabolic activities in infected chick microbiota. This analysis and gas chromatography-mass spectrometry on ingesta confirmed that lactic acid in cecal content coincides with the stable presence of enterococci in STm-infected chicks. Unique metabolites, including 2-isopropylmalic acid, an intermediate in the biosynthesis of leucine, were present only in the cecal content of STm-infected chicks. The metagenomic data suggested that the microbiota in STm-infected chicks contained a higher abundance of genes, from STm itself, involved in branched-chain amino acid synthesis. We generated an ilvC deletion mutant (STM3909) encoding ketol-acid-reductoisomerase, a gene required for the production of l-isoleucine and l-valine. ΔilvC mutants are disadvantaged for growth during competitive infection with the wild type. Providing the ilvC gene in trans restored the growth of the ΔilvC mutant. Our integrative approach identified biochemical pathways used by STm to establish a colonization niche in the chick intestine during development. IMPORTANCE Chicks are an ideal model to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Using taxonomic and metagenomic analyses, we captured the development of chick microbiota to 19 days posthatch in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm). We show that normal development of the microbiota takes place in waves and is altered in the presence of a pathogen. Metagenomics and metabolomics suggested that branched-chain amino acid biosynthesis is especially important for Salmonella growth in the infected chick intestine. Salmonella mutants unable to make l-isoleucine and l-valine colonize the chick intestine poorly. Restoration of the pathway for biosynthesis of these amino acids restored the colonizing ability of Salmonella. Integration of multiple analyses allowed us to correctly identify biochemical pathways used by Salmonella to establish a niche for colonization in the chick intestine during development.


Assuntos
Microbiota , Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas/microbiologia , Isoleucina , Salmonella typhimurium/metabolismo , Ceco/microbiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Valina/metabolismo , Salmonelose Animal/microbiologia , Doenças das Aves Domésticas/microbiologia
6.
Microbiome ; 10(1): 200, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36434690

RESUMO

BACKGROUND: Intestinal inflammation disrupts the microbiota composition leading to an expansion of Enterobacteriaceae family members (dysbiosis). Associated with this shift in microbiota composition is a profound change in the metabolic landscape of the intestine. It is unclear how changes in metabolite availability during gut inflammation impact microbial and host physiology. RESULTS: We investigated microbial and host lactate metabolism in murine models of infectious and non-infectious colitis. During inflammation-associated dysbiosis, lactate levels in the gut lumen increased. The disease-associated spike in lactate availability was significantly reduced in mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells. Commensal E. coli and pathogenic Salmonella, representative Enterobacteriaceae family members, utilized lactate via the respiratory L-lactate dehydrogenase LldD to increase fitness. Furthermore, mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells exhibited lower levels of inflammation in a model of non-infectious colitis. CONCLUSIONS: The release of lactate by intestinal epithelial cells during gut inflammation impacts the metabolism of gut-associated microbial communities. These findings suggest that during intestinal inflammation and dysbiosis, changes in metabolite availability can perpetuate colitis-associated disturbances of microbiota composition. Video Abstract.


Assuntos
Colite , Microbioma Gastrointestinal , Camundongos , Animais , Disbiose , Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Lactato Desidrogenase 5 , Camundongos Endogâmicos C57BL , Inflamação/patologia , Colite/patologia , Enterobacteriaceae/metabolismo
7.
Infect Immun ; 90(3): e0001322, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35100011

RESUMO

Research on Brucella pathogenesis has focused primarily on its ability to cause persistent intracellular infection of the mononuclear phagocyte system. At these sites, Brucella abortus evades innate immunity, which results in low-level inflammation and chronic infection of phagocytes. In contrast, the host response in the placenta during infection is characterized by severe inflammation and extensive extracellular replication of B. abortus. Despite the importance of reproductive disease caused by Brucella infection, our knowledge of the mechanisms involved in placental inflammation and abortion is limited. To understand the immune responses specifically driving placental pathology, we modeled placental B. abortus infection in pregnant mice. B. abortus infection caused an increase in the production of tumor necrosis factor alpha (TNF-α), specifically in the placenta. We found that placental expression levels of Tnfa and circulating TNF-α were dependent on the induction of endoplasmic reticulum stress and the B. abortus type IV secretion system (T4SS) effector protein VceC. Blockade of TNF-α reduced placental inflammation and improved fetal viability in mice. This work sheds light on a tissue-specific response of the placenta to B. abortus infection that may be important for bacterial transmission via abortion in the natural host species.


Assuntos
Brucelose Bovina , Brucelose , Animais , Brucella abortus/fisiologia , Brucelose/microbiologia , Bovinos , Feminino , Inflamação , Camundongos , Placenta , Gravidez , Fator de Necrose Tumoral alfa/metabolismo
8.
Cell Host Microbe ; 29(10): 1531-1544.e9, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34536347

RESUMO

The minimal genetic requirements for microbes to survive within multiorganism communities, including host-pathogen interactions, remain poorly understood. Here, we combined targeted gene mutagenesis with phenotype-guided genetic reassembly to identify a cooperative network of SPI-2 T3SS effector genes that are sufficient for Salmonella Typhimurium (STm) to cause disease in a natural host organism. Five SPI-2 effector genes support pathogen survival within the host cell cytoplasm by coordinating bacterial replication with Salmonella-containing vacuole (SCV) division. Unexpectedly, this minimal genetic repertoire does not support STm systemic infection of mice. In vivo screening revealed a second effector-gene network, encoded by the spv operon, that expands the life cycle of STm from growth in cells to deep-tissue colonization in a murine model of typhoid fever. Comparison between Salmonella infection models suggests how cooperation between effector genes drives tissue tropism in a pathogen group.


Assuntos
Proteínas de Bactérias/genética , Redes Reguladoras de Genes , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Animais , Proteínas de Bactérias/metabolismo , Citoplasma/microbiologia , Feminino , Ilhas Genômicas , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Óperon , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia , Tropismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência
9.
Elife ; 102021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34085924

RESUMO

The composition of gut-associated microbial communities changes during intestinal inflammation, including an expansion of Enterobacteriaceae populations. The mechanisms underlying microbiota changes during inflammation are incompletely understood. Here, we analyzed previously published metagenomic datasets with a focus on microbial hydrogen metabolism. The bacterial genomes in the inflamed murine gut and in patients with inflammatory bowel disease contained more genes encoding predicted hydrogen-utilizing hydrogenases compared to communities found under non-inflamed conditions. To validate these findings, we investigated hydrogen metabolism of Escherichia coli, a representative Enterobacteriaceae, in mouse models of colitis. E. coli mutants lacking hydrogenase-1 and hydrogenase-2 displayed decreased fitness during colonization of the inflamed cecum and colon. Utilization of molecular hydrogen was in part dependent on respiration of inflammation-derived electron acceptors. This work highlights the contribution of hydrogenases to alterations of the gut microbiota in the context of non-infectious colitis.


Assuntos
Ceco/microbiologia , Colite/induzido quimicamente , Colite/microbiologia , Colo/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/metabolismo , Microbioma Gastrointestinal , Hidrogênio/metabolismo , Animais , Ceco/metabolismo , Ceco/patologia , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Bases de Dados Genéticas , Sulfato de Dextrana , Modelos Animais de Doenças , Disbiose , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Humanos , Hidrogenase/genética , Hidrogenase/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Metagenoma , Metagenômica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piroxicam
10.
Cell Host Microbe ; 28(6): 780-788.e5, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33053375

RESUMO

The intestinal epithelium separates host tissue and gut-associated microbial communities. During inflammation, the host releases reactive oxygen and nitrogen species as an antimicrobial response. The impact of these radicals on gut microbes is incompletely understood. We discovered that the cryptic appBCX genes, predicted to encode a cytochrome bd-II oxidase, conferred a fitness advantage for E. coli in chemical and genetic models of non-infectious colitis. This fitness advantage was absent in mice that lacked epithelial NADPH oxidase 1 (NOX1) activity. In laboratory growth experiments, supplementation with exogenous hydrogen peroxide enhanced E. coli growth through AppBCX-mediated respiration in a catalase-dependent manner. We conclude that epithelial-derived reactive oxygen species are degraded in the gut lumen, which gives rise to molecular oxygen that supports the aerobic respiration of E. coli. This work illustrates how epithelial host responses intersect with gut microbial metabolism in the context of gut inflammation.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Escherichia coli/fisiologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , NADPH Oxidase 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aerobiose , Animais , Colite/induzido quimicamente , DNA Bacteriano , Modelos Animais de Doenças , Proteínas de Escherichia coli/fisiologia , Feminino , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Peróxido de Hidrogênio/metabolismo , Inflamação/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microbiota , NADPH Oxidase 1/genética , Oxigênio/metabolismo
11.
Cell Host Microbe ; 27(3): 376-388.e8, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32075741

RESUMO

During short-lived perturbations, such as inflammation, the gut microbiota exhibits resilience and reverts to its original configuration. Although microbial access to the micronutrient iron is decreased during colitis, pathogens can scavenge iron by using siderophores. How commensal bacteria acquire iron during gut inflammation is incompletely understood. Curiously, the human commensal Bacteroides thetaiotaomicron does not produce siderophores but grows under iron-limiting conditions using enterobacterial siderophores. Using RNA-seq, we identify B. thetaiotaomicron genes that were upregulated during Salmonella-induced gut inflammation and were predicted to be involved in iron uptake. Mutants in the xusABC locus (BT2063-2065) were defective for xenosiderophore-mediated iron uptake in vitro. In the normal mouse gut, the XusABC system was dispensable, while a xusA mutant colonized poorly during colitis. This work identifies xenosiderophore utilization as a critical mechanism for B. thetaiotaomicron to sustain colonization during inflammation and suggests a mechanism of how interphylum iron metabolism contributes to gut microbiota resilience.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Colite/microbiologia , Enterobacteriaceae/genética , Microbioma Gastrointestinal , Ferro/metabolismo , Sideróforos/genética , Animais , Bacteroides thetaiotaomicron/genética , Feminino , Genes Bacterianos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq , Simbiose
12.
mBio ; 10(4)2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337727

RESUMO

Subversion of endoplasmic reticulum (ER) function is a feature shared by multiple intracellular bacteria and viruses, and in many cases this disruption of cellular function activates pathways of the unfolded protein response (UPR). In the case of infection with Brucella abortus, the etiologic agent of brucellosis, the unfolded protein response in the infected placenta contributes to placentitis and abortion, leading to pathogen transmission. Here we show that B. abortus infection of pregnant mice led to death of infected placental trophoblasts in a manner that depended on the VirB type IV secretion system (T4SS) and its effector VceC. The trophoblast death program required the ER stress-induced transcription factor CHOP. While NOD1/NOD2 expression in macrophages contributed to ER stress-induced inflammation, these receptors did not play a role in trophoblast death. Both placentitis and abortion were independent of apoptosis-associated Speck-like protein containing a caspase activation and recruitment domain (ASC). These studies show that B. abortus uses its T4SS to induce cell-type-specific responses to ER stress in trophoblasts that trigger placental inflammation and abortion. Our results suggest further that in B. abortus the T4SS and its effectors are under selection as bacterial transmission factors.IMPORTANCEBrucella abortus infects the placenta of pregnant cows, where it replicates to high levels and triggers abortion of the calf. The aborted material is highly infectious and transmits infection to both cows and humans, but very little is known about how B. abortus causes abortion. By studying this infection in pregnant mice, we discovered that B. abortus kills trophoblasts, which are important cells for maintaining pregnancy. This killing required an injected bacterial protein (VceC) that triggered an endoplasmic reticulum (ER) stress response in the trophoblast. By inhibiting ER stress or infecting mice that lack CHOP, a protein induced by ER stress, we could prevent death of trophoblasts, reduce inflammation, and increase the viability of the pups. Our results suggest that B. abortus injects VceC into placental trophoblasts to promote its transmission by abortion.


Assuntos
Brucella abortus/patogenicidade , Morte Celular , Estresse do Retículo Endoplasmático , Placenta/microbiologia , Trofoblastos/microbiologia , Sistemas de Secreção Tipo IV/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Placenta/citologia , Gravidez , Fator de Transcrição CHOP/genética , Trofoblastos/patologia , Resposta a Proteínas não Dobradas
13.
J Exp Med ; 216(10): 2378-2393, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31358565

RESUMO

Chronic inflammation and gut microbiota dysbiosis, in particular the bloom of genotoxin-producing E. coli strains, are risk factors for the development of colorectal cancer. Here, we sought to determine whether precision editing of gut microbiota metabolism and composition could decrease the risk for tumor development in mouse models of colitis-associated colorectal cancer (CAC). Expansion of experimentally introduced E. coli strains in the azoxymethane/dextran sulfate sodium colitis model was driven by molybdoenzyme-dependent metabolic pathways. Oral administration of sodium tungstate inhibited E. coli molybdoenzymes and selectively decreased gut colonization with genotoxin-producing E. coli and other Enterobacteriaceae. Restricting the bloom of Enterobacteriaceae decreased intestinal inflammation and reduced the incidence of colonic tumors in two models of CAC, the azoxymethane/dextran sulfate sodium colitis model and azoxymethane-treated, Il10-deficient mice. We conclude that metabolic targeting of protumoral Enterobacteriaceae during chronic inflammation is a suitable strategy to prevent the development of malignancies arising from gut microbiota dysbiosis.


Assuntos
Colite/microbiologia , Neoplasias Colorretais/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Neoplasias Experimentais/microbiologia , Animais , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Sulfato de Dextrana/toxicidade , Disbiose/induzido quimicamente , Disbiose/genética , Escherichia coli/crescimento & desenvolvimento , Interleucina-10/deficiência , Camundongos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética
14.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30617205

RESUMO

During Salmonella enterica serovar Typhimurium infection, host inflammation alters the metabolic environment of the gut lumen to favor the outgrowth of the pathogen at the expense of the microbiota. Inflammation-driven changes in host cell metabolism lead to the release of l-lactate and molecular oxygen from the tissue into the gut lumen. Salmonella utilizes lactate as an electron donor in conjunction with oxygen as the terminal electron acceptor to support gut colonization. Here, we investigated transcriptional regulation of the respiratory l-lactate dehydrogenase LldD in vitro and in mouse models of Salmonella infection. The two-component system ArcAB repressed transcription of l-lactate utilization genes under anaerobic conditions in vitro The ArcAB-mediated repression of lldD transcription was relieved under microaerobic conditions. Transcription of lldD was induced by l-lactate but not d-lactate. A mutant lacking the regulatory protein LldR failed to induce lldD transcription in response to l-lactate. Furthermore, the lldR mutant exhibited reduced transcription of l-lactate utilization genes and impaired fitness in murine models of infection. These data provide evidence that the host-derived metabolites oxygen and l-lactate serve as cues for Salmonella to regulate lactate oxidation metabolism on a transcriptional level.


Assuntos
Mucosa Intestinal/microbiologia , Ácido Láctico/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Nature ; 553(7687): 208-211, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323293

RESUMO

Inflammatory diseases of the gastrointestinal tract are frequently associated with dysbiosis, characterized by changes in gut microbial communities that include an expansion of facultative anaerobic bacteria of the Enterobacteriaceae family (phylum Proteobacteria). Here we show that a dysbiotic expansion of Enterobacteriaceae during gut inflammation could be prevented by tungstate treatment, which selectively inhibited molybdenum-cofactor-dependent microbial respiratory pathways that are operational only during episodes of inflammation. By contrast, we found that tungstate treatment caused minimal changes in the microbiota composition under homeostatic conditions. Notably, tungstate-mediated microbiota editing reduced the severity of intestinal inflammation in mouse models of colitis. We conclude that precision editing of the microbiota composition by tungstate treatment ameliorates the adverse effects of dysbiosis in the inflamed gut.


Assuntos
Colite/tratamento farmacológico , Colite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Anaerobiose/efeitos dos fármacos , Animais , Respiração Celular/efeitos dos fármacos , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Molibdênio/metabolismo , Compostos de Tungstênio/farmacologia , Compostos de Tungstênio/uso terapêutico
17.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29203548

RESUMO

Treatment of intracellular bacterial pathogens with antibiotic therapy often requires a long course of multiple drugs. A barrier to developing strategies that enhance antibiotic efficacy against these pathogens is our poor understanding of the intracellular nutritional environment that maintains bacterial persistence. The intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs); however, knowledge of the metabolic adaptations promoting exploitation of this niche is limited. Here we show that one mechanism promoting enhanced survival in AAMs is a shift in macrophage arginine utilization from production of nitric oxide (NO) to biosynthesis of polyamines, induced by interleukin 4 (IL-4)/IL-13 treatment. Production of polyamines by infected AAMs promoted both intracellular survival of B. abortus and chronic infection in mice, as inhibition of macrophage polyamine synthesis or inactivation of the putative putrescine transporter encoded by potIHGF reduced both intracellular survival in AAMs and persistence in mice. These results demonstrate that increased intracellular availability of polyamines induced by arginase-1 expression in IL-4/IL-13-induced AAMs promotes chronic persistence of B. abortus within this niche and suggest that targeting of this pathway may aid in eradicating chronic infection.


Assuntos
Brucella abortus/fisiologia , Brucelose/microbiologia , Macrófagos/fisiologia , Poliaminas/metabolismo , Animais , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Baço/citologia
18.
Cell Host Microbe ; 23(1): 54-64.e6, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29276172

RESUMO

During Salmonella-induced gastroenteritis, mucosal inflammation creates a niche that favors the expansion of the pathogen population over the microbiota. Here, we show that Salmonella Typhimurium infection was accompanied by dysbiosis, decreased butyrate levels, and substantially elevated lactate levels in the gut lumen. Administration of a lactate dehydrogenase inhibitor blunted lactate production in germ-free mice, suggesting that lactate was predominantly of host origin. Depletion of butyrate-producing Clostridia, either through oral antibiotic treatment or as part of the pathogen-induced dysbiosis, triggered a switch in host cells from oxidative metabolism to lactate fermentation, increasing both lactate levels and Salmonella lactate utilization. Administration of tributyrin or a PPARγ agonist diminished host lactate production and abrogated the fitness advantage conferred on Salmonella by lactate utilization. We conclude that alterations of the gut microbiota, specifically a depletion of Clostridia, reprogram host metabolism to perform lactate fermentation, thus supporting Salmonella infection.


Assuntos
Clostridium/crescimento & desenvolvimento , Disbiose/microbiologia , Gastroenterite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Ácido Láctico/metabolismo , Salmonella typhimurium/metabolismo , Animais , Antibacterianos/farmacologia , Ácido Butírico/metabolismo , Feminino , Fermentação , Gastroenterite/patologia , L-Lactato Desidrogenase/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/agonistas , Infecções por Salmonella/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Triglicerídeos/farmacologia
19.
Cell Host Microbe ; 22(3): 291-301.e6, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28844888

RESUMO

The mucosal inflammatory response induced by Salmonella serovar Typhimurium creates a favorable niche for this gut pathogen. Conventional wisdom holds that S. Typhimurium undergoes an incomplete tricarboxylic acid (TCA) cycle in the anaerobic mammalian gut. One change during S. Typhimurium-induced inflammation is the production of oxidized compounds by infiltrating neutrophils. We show that inflammation-derived electron acceptors induce a complete, oxidative TCA cycle in S. Typhimurium, allowing the bacteria to compete with the microbiota for colonization. A complete TCA cycle facilitates utilization of the microbiota-derived fermentation product succinate as a carbon source. S. Typhimurium succinate utilization genes contribute to efficient colonization in conventionally raised mice, but provide no growth advantage in germ-free mice. Mono-association of gnotobiotic mice with Bacteroides, a major succinate producer, restores succinate utilization in S. Typhimurium. Thus, oxidative central metabolism enables S. Typhimurium to utilize a variety of carbon sources, including microbiota-derived succinate.


Assuntos
Bactérias/metabolismo , Bacteroides/metabolismo , Colite/microbiologia , Microbioma Gastrointestinal , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Ácido Succínico/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Ciclo do Ácido Cítrico , Colite/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos CBA , Estresse Oxidativo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/genética
20.
Cell Host Microbe ; 21(2): 208-219, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28182951

RESUMO

Intestinal inflammation is frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is characterized by a reduced abundance of obligate anaerobic bacteria and an expansion of facultative Proteobacteria such as commensal E. coli. The mechanisms enabling the outgrowth of Proteobacteria during inflammation are incompletely understood. Metagenomic sequencing revealed bacterial formate oxidation and aerobic respiration to be overrepresented metabolic pathways in a chemically induced murine model of colitis. Dysbiosis was accompanied by increased formate levels in the gut lumen. Formate was of microbial origin since no formate was detected in germ-free mice. Complementary studies using commensal E. coli strains as model organisms indicated that formate dehydrogenase and terminal oxidase genes provided a fitness advantage in murine models of colitis. In vivo, formate served as electron donor in conjunction with oxygen as the terminal electron acceptor. This work identifies bacterial formate oxidation and oxygen respiration as metabolic signatures for inflammation-associated dysbiosis.


Assuntos
Disbiose/microbiologia , Escherichia coli/metabolismo , Formiatos/metabolismo , Inflamação/microbiologia , Animais , Colite/microbiologia , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteobactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...