Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38301885

RESUMO

BACKGROUND: Resting-state functional connectivity analysis has been used to study disruptions in neural circuitries underlying eating disorder symptoms. Research has shown resting-state functional connectivity to be altered during the acute phase of anorexia nervosa (AN), but little is known about the biological mechanisms underlying neural changes associated with weight restoration. The goal of the current study was to investigate longitudinal changes in regional homogeneity (ReHo) among neighboring voxels, degree centrality (DC) (a voxelwise whole brain correlation coefficient), voxel-mirrored homotopic connectivity (VMHC) (measuring the synchronization between hemispheres), and the fractional amplitude of low-frequency fluctuations associated with weight gain during AN treatment. METHODS: Resting-state functional connectivity data were acquired and analyzed from a sample of 174 female volunteers: 87 underweight patients with AN that were scanned before treatment and again after at least 12% body mass index increase, as well as 87 age-matched healthy control participants. RESULTS: Longitudinal changes in ReHo, DC, VMHC, and the fractional amplitude of low-frequency fluctuations were observed in most regions identified to differ between patients with AN before treatment and healthy control participants. However, the degree of normalization varied for each parameter, ranging from 9% of all clusters in DC to 66% in VMHC. Longitudinal changes in ReHo and VMHC showed a linear association weight gain. CONCLUSIONS: Resting-state functional magnetic resonance imaging measures, including ReHo, DC, VMHC, and the fractional amplitude of low-frequency fluctuations, show varying degrees of recovery after short-term weight restoration. Although only some of these changes were related to weight gain, our results provide an overall positive message, suggesting that weight restoration is associated with changes in functional brain measures that point toward normalization.


Assuntos
Anorexia Nervosa , Humanos , Feminino , Adolescente , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Encéfalo , Aumento de Peso
2.
Neoplasia ; 46: 100949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956532

RESUMO

Triple negative breast cancer (TNBC) is an aggressive malignancy for which chemotherapy remains the standard treatment. However, between 3 and 5 years after chemotherapy, about half patients will relapse and it is essential to identify vulnerabilities of cancer cells surviving neoadujuvant therapy. In this study, we established persistent TNBC cell models after treating MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide, and then with paclitaxel, for a total of 18 weeks. The resulting chemo-persistent cell lines were more proliferative, both in vitro and in xenografted mice. Interestingly, MDA-MB-231 persistent cells became less sensitive to chemotherapeutic drugs, whereas SUM159-PT persistent cells kept similar sensitivity compared to control cells. The reduced sensitivity to chemotherapy in MDA-MB-231 persistent cells was found to be associated with an increased oxidative phosphorylation (OXPHOS) and modified levels of tricarboxylic acid cycle (TCA) intermediates. Integration of data from proteomics and metabolomics demonstrated TCA cycle among the most upregulated pathways in MDA-MB-231 persistent cells. The absence of glucose and pyruvate impeded OXPHOS in persistent cells, while the absence of glutamine did not. In contrast, OXPHOS was not modified in control cells independently of TCA substrates, indicating that MDA-MB-231 persistent cells evolved towards a more pyruvate dependent profile. Finally, the inhibition of pyruvate entry into mitochondria with UK-5099 reduced OXPHOS and re-sensitized persistent cells to therapeutic agents. Together, these findings suggest that targeting mitochondrial pyruvate metabolism may help to overcome mitochondrial adaptation of chemo-persistent TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Mitocôndrias/metabolismo , Piruvatos , Proliferação de Células
3.
Cells ; 10(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203746

RESUMO

Tremendous data have been accumulated in the effort to understand chemoresistance of triple negative breast cancer (TNBC). However, modifications in cancer cells surviving combined and sequential treatment still remain poorly described. In order to mimic clinical neoadjuvant treatment, we first treated MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide for 2 days, and then with paclitaxel for another 2 days. After 4 days of recovery, persistent cells surviving the treatment were characterized at both cellular and molecular level. Persistent cells exhibited increased growth and were more invasive in vitro and in zebrafish model. Persistent cells were enriched for vimentinhigh sub-population, vimentin knockdown using siRNA approach decreased the invasive and sphere forming capacities as well as Akt phosphorylation in persistent cells, indicating that vimentin is involved in chemotherapeutic treatment-induced enhancement of TNBC aggressiveness. Interestingly, ectopic vimentin overexpression in native cells increased cell invasion and sphere formation as well as Akt phosphorylation. Furthermore, vimentin overexpression alone rendered the native cells resistant to the drugs, while vimentin knockdown rendered them more sensitive to the drugs. Together, our data suggest that vimentin could be considered as a new targetable player in the ever-elusive status of drug resistance and recurrence of TNBC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Vimentina/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Ciclofosfamida/farmacologia , Modelos Animais de Doenças , Tratamento Farmacológico/métodos , Epirubicina/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Terapia Neoadjuvante/métodos , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Vimentina/metabolismo , Peixe-Zebra
4.
Cancers (Basel) ; 12(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610610

RESUMO

Breast cancer is a major public health problem and the leading world cause of women death by cancer. Both the recurrence and mortality of breast cancer are mainly caused by the formation of metastasis. The long non-coding RNA H19, the precursor of miR-675, is involved in breast cancer development. The aim of this work was to determine the implication but, also, the relative contribution of H19 and miR-675 to the enhancement of breast cancer metastatic potential. We showed that both H19 and miR-675 increase the invasive capacities of breast cancer cells in xenografted transgenic zebrafish models. In vitro, H19 and miR-675 enhance the cell migration and invasion, as well as colony formation. H19 seems to induce the epithelial-to-mesenchymal transition (EMT), with a decreased expression of epithelial markers and an increased expression of mesenchymal markers. Interestingly, miR-675 simultaneously increases the expression of both epithelial and mesenchymal markers, suggesting the induction of a hybrid phenotype or mesenchymal-to-epithelial transition (MET). Finally, we demonstrated for the first time that miR-675, like its precursor H19, increases the stemness properties of breast cancer cells. Altogether, our data suggest that H19 and miR-675 could enhance the aggressiveness of breast cancer cells through both common and different mechanisms.

5.
Proteomics ; 19(21-22): e1800454, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430054

RESUMO

Many solid cancers are hierarchically organized with a small number of cancer stem cells (CSCs) able to regrow a tumor, while their progeny lacks this feature. Breast CSC is known to contribute to therapy resistance. The study of those cells is usually based on their cell-surface markers like CD44high /CD24low/neg or their aldehyde dehydrogenase (ALDH) activity. However, these markers cannot be used to track the dynamics of CSC. Here, a transcriptomic analysis is performed to identify segregating gene expression in CSCs and non-CSCs, sorted by Aldefluor assay. It is observed that among ALDH-associated genes, only ALDH1A1 isoform is increased in CSCs. A CSC reporter system is then developed by using a far red-fluorescent protein (mNeptune) under the control of ALDH1A1 promoter. mNeptune-positive cells exhibit higher sphere-forming capacity, tumor formation, and increased resistance to anticancer therapies. These results indicate that the reporter identifies cells with stemness characteristics. Moreover, live tracking of cells in a microfluidic system reveals a higher extravasation potential of CSCs. Live tracking of non-CSCs under irradiation treatment show, for the first time, live reprogramming of non-CSCs into CSCs. Therefore, the reporter will allow for cell tracking to better understand the implication of CSCs in breast cancer development and recurrence.


Assuntos
Família Aldeído Desidrogenase 1/genética , Neoplasias da Mama/genética , Rastreamento de Células , Perfilação da Expressão Gênica , Genes Reporter , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Retinal Desidrogenase/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...