Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401662, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749066

RESUMO

Integration of molecular switching units into complex electronic circuits is considered to be the next step towards the realization of novel logic and memory devices. Here, we report on an ordered 2D network of neighboring ternary switching units represented by triazatruxene (TAT) molecules organized in a honeycomb lattice on a Ag(111) surface. Using low-temperature scanning tunneling microscopy, we are able to control the bonding configurations of individual TAT molecules within the lattice, realizing up to 12 distinct states per molecule. The switching between those states shows a particularly strong bias dependence ranging from tens of millivolts to volts. Based on a single TAT molecule as a fundamental building block, we then explore the low-bias switching behavior in units consisting of two and more interacting TAT molecules purposefully defined by the high-bias switching within the honeycomb lattice. we demonstrate the possibility to realize up to 9 and 19 distinguishable states in a dyad and a tetrad of coupled switching units, respectively. The switching dynamics can be triggered and accessed by single-point measurements on a single molecule. High experimental control over the desired state, owing to hierarchical switching and pronounced switching directionality, as well as the observed full reversibility, makes this system particularly appealing, paving the way to design complex molecule-based memory systems. This article is protected by copyright. All rights reserved.

2.
Dalton Trans ; 53(1): 251-259, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38037827

RESUMO

Complexes PyrDPE-RuCl and PyrDPE-Ruacac with a π-extended 2,7-di(4-phenylethynyl)pyrene linker undergo simultaneous one-electron oxidations of their {Ru}-styryl entities. The absence of an intervalence charge-transfer (IVCT) band at intermediate stages, where the mixed-valent, singly oxidized radical cation is present, and spin density confinement to the terminal styryl ruthenium site(s) are tokens of a lack of electronic coupling between the {Ru} entities across the π-conjugated linker. The close similarity of the linker-based π → π* bands in the complexes and the free ligand and their insensitivity towards oxidations at the terminal sites indicate that the central pyrenyl fluorophore is electronically decoupled from the electron-rich {Ru}-styryl termini. As a consequence, the complexes offer stable pyrene-based fluorescence emissions at 77 K, which are red-shifted from that of the linker.

3.
Inorg Chem ; 62(46): 18789-18803, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37921553

RESUMO

We report on the synthesis of the new bis(alkenylruthenium) complex DBTTF-(ViRu)2 with a longitudinally extended, π-conjugated dibenzotetrathiafulvalene (DBTTF) bridge, characterized by multinuclear NMR, IR, and UV/vis spectroscopy, mass spectrometry, and single-crystal X-ray diffraction. Cyclic and square-wave voltammetry revealed that DBTTF-(ViRu)2 undergoes four consecutive oxidations. IR, UV/vis/near-IR, and electron paramagnetic resonance spectroscopy indicate that the first oxidation involves the redox-noninnocent DBTTF bridge, while the second oxidation is biased toward one of the peripheral styrylruthenium entities, thereby generating an electronically coupled mixed-valent state ({Ru}-CH═CH)•+-DBTTF•+-(CH═CH-{Ru}) [{Ru} = Ru(CO)Cl(PiPr3)2]. The latter is apparently in resonance with the ({Ru}-CH═CH)•+-DBTTF-(CH═CH-{Ru})•+ and ({Ru}-CH═CH)-DBTTF2+-(CH═CH-{Ru}) forms, which are calculated to lie within 19 kJ/mol. Higher oxidized forms proved too unstable for further characterization. The reaction of DBTTF-(ViRu)2 with the strong organic acceptors 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, tetracyano-p-benzoquinodimethane (TCNQ), and F4TCNQ resulted in formation of the DBTTF-(ViRu)2•+ radical cation, as shown by various spectroscopic techniques. Solid samples of these compounds were found to be highly amorphous and electrically insulating.

4.
Inorg Chem ; 62(39): 16236-16249, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37733818

RESUMO

We report on seven new ferrocenyl-(1, 3)- and ferrocenylethynyl-modified N,N',N″-triethyltriazatruxenes (EtTATs) 4-7 as well as the dodecyl counterpart 2 of compound 1 and their use as molecular switching units when deposited on a Ag(111) surface. Such functional units may constitute a new approach to molecule-based high-density information storage and processing. Besides the five compounds 1-3, 6, and 7, where the 3-fold rotational symmetry of the triazatruxene (TAT) template is preserved, we also included 2-ethynylferrocenyl-TAT 4 and 2,2'-di(ethynylferrocenyl)-TAT 5, whose mono- and disubstitution patterns break the 3-fold symmetry of the TAT core. Voltammetric studies indicate that the ferrocenyl residues of compounds 1-7 oxidize prior to the oxidation of the TAT core. We have noted strong electrostatic effects on TAT oxidation in the 2,2',2″-triferrocenyl-TAT derivatives 1 and 2 and the 3,3',3″-isomer 3. The oxidized complexes feature multiple electronic excitations in the near-infrared and the visible spectra, which are assigned to dδ/δ* transitions of the ferrocenium (Fc+) moieties, as well as TAT → Fc+ charge-transfer transitions. The latter are augmented by intervalence charge-transfer contributions Fc → Fc+ in mixed-valent states, where only a part of the available ferrocenyl residues is oxidized. EtTAT was previously identified as a directional three-level switching unit when deposited on Ag(111) and constitutes a trinary-digit unit for on-surface information storage. The symmetrically trisubstituted compound 6 retains this property, albeit at somewhat reduced switching rates due to the additional interaction between the ferrocenyl residues and the Ag surface. In particular, the high directionality at low bias and the inversion of the preferred sense of the on-surface rocking motion with either a clockwise or counterclockwise switching sense, depending on the identity of the surface enantiomer, are preserved. Unsymmetrical substitution in mono- and diferrocenylated 4 and 5 alters the underlying ratchet potential in a manner such that a two-state switching between the two degenerate surface conformations of 4 or a pronounced suppression of switching (5) is observed.

5.
Dalton Trans ; 52(15): 4674-4677, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37000416

RESUMO

Permethylation of the phenylene linker in a cationic ferrocenyl-phenylthioxanthylium dyad increases the amount of the diradical ferrocenium thioxanthyl radical valence tautomer and aids in supressing dimerization of the latter and of the one-electron reduced neutral radical.

6.
Nanoscale ; 15(11): 5305-5316, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36811332

RESUMO

The ability to predict the conductive behaviour of molecules, connected to macroscopic electrodes, represents a crucial prerequisite for the design of nanoscale electronic devices. In this work, we investigate whether the notion of a negative relation between conductance and aromaticity (the so-called NRCA rule) also pertains to quasi-aromatic and metallaaromatic chelates derived from dibenzoylmethane (DBM) and Lewis acids (LAs) that either do or do not contribute two extra dπ electrons to the central resonance-stabilised ß-ketoenolate binding pocket. We therefore synthesised a family of methylthio-functionalised DBM coordination compounds and subjected them, along with their truly aromatic terphenyl and 4,6-diphenylpyrimidine congeners, to scanning tunneling microscope break-junction (STM-BJ) experiments on gold nanoelectrodes. All molecules share the common motif of three π-conjugated, six-membered, planar rings with a meta-configuration at the central ring. According to our results, their molecular conductances fall within a factor of ca. 9 in an ordering aromatic < metallaaromatic < quasi-aromatic. The experimental trends are rationalised by quantum transport calculations based on density functional theory (DFT).

7.
RSC Adv ; 13(6): 3652-3660, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36756575

RESUMO

Three binary charge-transfer (CT) compounds resulting from the donor 2,2' : 6',2'' : 6'',6-trioxotriphenylamine (TOTA) and the acceptors F4TCNQ and F4BQ and of a pyrene-annulated azaacene (PAA) with the acceptor F4TCNQ are reported. The identity of these CT compounds are confirmed by single-crystal X-ray diffraction as well as by IR, UV-vis-NIR and EPR spectroscopy. X-ray diffraction analysis reveals a 1 : 1 stoichiometry for TOTA·F4TCNQ, a 2 : 1 donor : acceptor ratio in (TOTA)2·F4BQ, and a rare 4 : 1 stoichiometry in (PAA)4·F4TCNQ, respectively. Metrical parameters of the donor (D) and acceptor (A) constituents as well as IR spectra indicate full CT in TOTA·F4TCNQ, partial CT in (TOTA)2·F4BQ and only a very modest one in (PAA)4·F4TCNQ. Intricate packing motifs are present in the crystal lattice with encaged, π-stacked (F4TCNQ-)2 dimers in TOTA·F4TCNQ or mixed D/A stacks in the other two compounds. Their solid-state UV-vis-NIR spectra feature CT transitions. The CT compounds with F4TCNQ are electrical insulators, while (TOTA)2·F4BQ is weakly conducting.

8.
Inorg Chem ; 61(32): 12662-12677, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917328

RESUMO

Three-dimensional molecular barrels Ru6-4 and Ru6-5 were synthesized in high yields from dinuclear ruthenium-vinyl clamps and tritopic triphenylamine-derived carboxylate linkers and characterized by multinuclear NMR spectroscopy including 1H-1H COSY and 1H DOSY measurements, high-resolution electrospray ionization mass spectrometry, and X-ray crystallography. The metal frameworks of the cages adopt the shape of twisted trigonal prisms, and they crystallize as racemic mixtures of interdigitating Δ- and Λ-enantiomers with a tight columnar packing in Ru6-4. Electrochemical studies and redox titrations revealed that the cages are able to release up to 11 electrons on the voltammetric timescale and that their cage structures persist up to the hexacation level. IR and UV-vis-near-infrared spectroelectrochemical studies confirm substituent-dependent intramolecular electronic communication within the π-conjugated 1,3-divinylphenylene backbone in the tricationic states, where all three divinylphenylene-bridged diruthenium clamps are present in mixed-valent radical cation states. The formation of 1:3 charge-transfer salts with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane as the electron acceptor is also demonstrated.

9.
J Am Chem Soc ; 144(30): 13704-13716, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35868238

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are prominent lead structures for organic optoelectronic materials. This work describes the synthesis of three B,S-doped PAHs with heptacene-type scaffolds via nucleophilic aromatic substitution reactions between fluorinated arylborane precursors and 1,2-(Me3SiS)2C6H4/1,8-diazabicyclo[5.4.0]undec-7-ene (72-92% yield). All compounds contain tricoordinate B atoms at their 7,16-positions, kinetically protected by mesityl (Mes) substituents. PAHs 1/2 feature two/four S atoms at their 5,18-/5,9,14,18-positions; PAH 3 is a 6,8,15,17-tetrafluoro derivative of 2. For comparison, we also prepared the skewed naphtho[2,3-c]pentaphene-type isomer 4. The simultaneous presence of electron-accepting B atoms and electron-donating S atoms results in a redox-ambiphilic behavior; the radical cations [1•]+ and [2•]+ were characterized by electron paramagnetic resonance spectroscopy. Several low-lying charge-transfer states exist, some of which (especially S-to-B and Mes-to-B transitions) compete on the excited-state potential-energy surface. Consistent with the calculated state characters and oscillator strengths, this competition results in a spread of fluorescence quantum yields (2-27%). The optoelectronic properties of 1 change drastically upon addition of Ag+ ions: while the color of 1 in CH2Cl2 changes bathochromically from yellow to red (λmax from 463 to 486 nm; -0.13 eV), the emission band shifts hypsochromically from 606 to 545 nm (+0.23 eV), and the fluorescence quantum yield increases from 12 to 43%. According to titration experiments, higher order adducts [Agn1m]n+ are formed. As a suitable system for modeling Ag+ complexation, our calculations predict a dimer structure (n = m = 2) with Ag2S4 core, approximately linear S-Ag-S fragments, and Ag-Ag interaction. The computed optoelectronic properties of [Ag212]2+ agree well with the experimentally observed ones.

10.
Chemistry ; 28(23): e202104403, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35235235

RESUMO

The synthesis of dinuclear ruthenium alkenyl complexes with {Ru(CO)(Pi Pr3 )2 (L)} entities (L=Cl- in complexes Ru2 -3 and Ru2 -7; L=acetylacetonate (acac- ) in complexes Ru2 -4 and Ru2 -8) and with π-conjugated 2,7-divinylphenanthrenediyl (Ru2 -3, Ru2 -4) or 5,8-divinylquinoxalinediyl (Ru2 -7, Ru2 -8) as bridging ligands are reported. The bridging ligands are laterally π-extended by anellating a pyrene (Ru2 -7, Ru2 -8) or a 6,7-benzoquinoxaline (Ru2 -3, Ru2 -4) π-perimeter. This was done with the hope that the open π-faces of the electron-rich complexes will foster association with planar electron acceptors via π-stacking. The dinuclear complexes were subjected to cyclic and square-wave voltammetry and were characterized in all accessible redox states by IR, UV/Vis/NIR and, where applicable, by EPR spectroscopy. These studies signified the one-electron oxidized forms of divinylphenylene-bridged complexes Ru2 -7, Ru2 -8 as intrinsically delocalized mixed-valent species, and those of complexes Ru2 -3 and Ru2 -4 with the longer divinylphenanthrenediyl linker as partially localized on the IR, yet delocalized on the EPR timescale. The more electron-rich acac- congeners formed non-conductive 1 : 1 charge-transfer (CT) salts on treatment with the F4 TCNQ electron acceptor. All spectroscopic techniques confirmed the presence of pairs of complex radical cations and F4 TCNQ.- radical anions in these CT salts, but produced no firm evidence for the relevance of π-stacking to their formation and properties.

11.
Dalton Trans ; 50(42): 15336-15351, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34636831

RESUMO

Five new, intensely green diferrocenylphenylmethylium complexes 1+-5+ with electron donating (EDG: 4-MeO, 4-Me, 4-Br) or withdrawing (EWG: 3,5-CF3, 4-nC6F13) substituents were synthesized and fully characterized. The substituent influence on their electrochemical and spectroscopic properties was investigated by cyclic voltammetry, UV/Vis/NIR and T-dependent EPR spectroscopy of the cationic as well as the oxidized (12+-52+) and reduced (1˙-5˙) species. The reduced forms equilibrate with their corresponding dimers (65-83%) with a clear substituent influence as expressed by their Hammett parameters in an ordering 4+ > 5+ > 3+ > 2+ > 1+. The structures of all five precursor carbinols 1-OH-5-OH and those of three of the diferrocenylphenylmethylium cations (1+, 4+-5+) were established by X-ray crystallography.

12.
Molecules ; 26(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34500666

RESUMO

Careful optimization of the reaction conditions provided access to the particularly small tetraruthenium macrocycle 2Ru2Ph-Croc, which is composed out of two redox-active divinylphenylene-bridged diruthenium entities {Ru}-1,4-CH=CH-C6H4-CH=CH-{Ru} (Ru2Ph; {Ru} = Ru(CO)Cl(PiPr3)2) and two likewise redox-active and potentially non-innocent croconate linkers. According to single X-ray diffraction analysis, the central cavity of 2Ru2Ph-Croc is shielded by the bulky PiPr3 ligands, which come into close contact. Cyclic voltammetry revealed two pairs of split anodic waves in the weakly ion pairing CH2Cl2/NBu4BArF24 (BArF24 = [B{C6H3(CF3)2-3,5}4]- electrolyte, while the third and fourth waves fall together in CH2Cl2/NBu4PF6. The various oxidized forms were electrogenerated and scrutinized by IR and UV/Vis/NIR spectroscopy. This allowed us to assign the individual oxidations to the metal-organic Ru2Ph entities within 2Ru2Ph-Croc, while the croconate ligands remain largely uninvolved. The lack of specific NIR bands that could be assigned to intervalence charge transfer (IVCT) in the mono- and trications indicates that these mixed-valent species are strictly charge-localized. 2Ru2Ph-Croc is hence an exemplary case, where stepwise IR band shifts and quite sizable redox splittings between consecutive one-electron oxidations would, on first sight, point to electronic coupling, but are exclusively due to electrostatic and inductive effects. This makes 2Ru2Ph-Croc a true "pretender".

13.
Organometallics ; 40(15): 2736-2749, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34393320

RESUMO

In this contribution, we revisit the neglected and forgotten cationic, air-stable, 18-valence electron, heteroleptic sandwich complex (cycloheptatrienyl)(cyclopentadienyl)manganese, which was reported independently by Fischer and by Pauson about 50 years ago. Using advanced high-power LED photochemical synthesis, an expedient rapid access to the parent complex and to functionalized derivatives with alkyl, carboxymethyl, bromo, and amino substituents was developed. A thorough study of these "tromancenium" salts by a range of spectroscopic techniques (1H/13C/55Mn-NMR, IR, UV-vis, HRMS, XRD, XPS, EPR), cyclic voltammetry (CV), and quantum chemical calculations (DFT) shows that these manganese sandwich complexes are unique metallocenes with quite different chemical and physical properties in comparison to those of isoelectronic cobaltocenium salts or (cycloheptatrienyl)(cyclopentadienyl) sandwich complexes of the early transition metals. Electrochemically, all tromancenium ions undergo a chemically partially reversible oxidation and a chemically irreversible reduction at half-wave or peak potentials that respond to the substituents at the Cp deck. As exemplarily shown for the parent tromancenium ion, the product generated during the irreversible reduction process reverts at least partially to the starting material upon reoxidation. Quantum-chemical calculations of the parent tromancenium salt indicate that metal-ligand bonding is distinctly weaker for the cycloheptatrienyl ligand in comparison to that of the cyclopentadienyl ligand. Both the HOMO and the LUMO are metal and cycloheptatrienyl-ligand centered, indicating that chemical reactions will occur either metal-based or at the seven-membered ring, but not on the cyclopentadienyl ligand.

14.
Chemistry ; 27(42): 10854-10868, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33901313

RESUMO

Three new electrochromic ferrocenyl triarylmethylium dyes with fluorenylium (1 a+ , 1 b+ ) or thioxanthylium (1 c+ ) residues were selected in order to keep the intrinsic differences of redox potentials for ferrocene oxidation and triarylmethylium reduction small and to trigger valence tautomerism (VT). UV/Vis/NIR and quantitative EPR spectroscopy identified paramagnetic diradical isomers 1 a..+ -1 c..+ alongside diamagnetic forms 1 a+ -1 c+ , which renders these complexes magnetochemical switches. The diradical forms 1 a..+ -1 c..+ as well as the one-electron-reduced triarylmethyl forms of the complexes were found to dimerize in solution. For radical 1 a. , dimerization occurs on the timescale of cyclic voltammetry; this allowed us to determine the kinetics and equilibrium constant for this process by digital simulation. Mößbauer spectroscopy indicated that 1 a+ and 1 b+ retain VT even in the solid state. UV/Vis/NIR spectro-electrochemistry revealed the poly-electrochromic behaviour of these complexes by establishing the distinctly different electronic absorption profiles of the corresponding oxidized and reduced forms.

15.
Langmuir ; 37(14): 4183-4191, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33787275

RESUMO

Amphiphiles are unique in their ability to self-assemble in aqueous solution into aggregates. The control of the self-organization of amphiphiles and the live monitoring of the ensuing structure changes by analytical methods are key challenges in this field. One way to gain control and to trigger the self-assembly/disassembly of amphiphiles is to introduce a redox-active constituent to the amphiphile structure, as is the case with metallosurfactants. In this work, we report a cyclic and square-wave voltammetric study on the multi-stimuli-responsive amphiphile 1-(Z)-heptenyl-1'-dimethylammoniummethyl-(3-sulfopropyl)ferrocene (1). We observe separate waves/peaks for molecules of 1 present as the monomer in its electrode-immobilized, its freely diffusing form, and its aggregated form. This allows for a direct monitoring of how the underlying equilibria depend on the concentration and time. Isothermal titration calorimetry indicates that aggregation is entropically and enthalpically favored. Our findings thus illustrate the utility of voltammetric methods for investigating self-assembly processes of redox-active amphiphiles and their redox switchability.

16.
Inorg Chem ; 59(22): 16703-16715, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33135894

RESUMO

We present the coordination-driven self-assembly of three tetranuclear metallacycles containing intracyclic NH2, OH, or OMe functionalities through the combination of various isophthalic acid building blocks with a divinylphenylene diruthenium complex. All new complexes of this study were characterized by means of nuclear magnetic resonance spectroscopy, ultrahigh-resolution ESI mass spectrometry, cyclic and square wave voltammetry and, in two cases, X-ray diffraction. The hydroxy functionalized macrocycle 4-BOH and the corresponding half-cycle 2-OH stand out, as their intracyclic OH···O hydrogen bonds stabilize their mixed-valent one- (2-OH, 4-BOH) and three-electron-oxidized states (4-BOH). Despite sizable redox splittings between all one-electron waves, the mixed-valent monocations and trications do not exhibit any intervalence charge-transfer band, assignable to through-bond electronic coupling, but nevertheless display distinct IR band shifts of their charge-sensitive Ru(CO) tags. We ascribe these seemingly contradicting observations to a redox-induced shuffling of the OH···O hydrogen bond(s) to the remaining, more electron-rich, reduced redox site.

17.
Chemistry ; 26(72): 17546-17558, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32846003

RESUMO

C-C cross coupling products of bowl-shaped as-indaceno[3,2,1,8,7,6-pqrstuv]picene (Idpc) and different planar arenes and ethynyl-arenes were synthesized. Photoluminescence as well as electrochemical properties of all products were investigated and complemented by time-dependent quantum chemical calculations. UV/Vis spectroelectrochemistry investigations of the directly linked (Idpc)2 indicated the absence of any intramolecular charge-transfer transition of intermittently formed (Idpc)2 .- . All coupling products showed fluorescence. Ferrocene-1-yl-Idpc was structurally characterized by X-ray diffraction and is a rare example of a ferrocene-containing buckybowl exhibiting luminescence.

18.
J Med Chem ; 63(10): 5568-5584, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32319768

RESUMO

Chemotherapy remains one of the dominant treatments to cure cancer. However, due to the many inherent drawbacks, there is a search for new chemotherapeutic drugs. Many classes of compounds have been investigated over the years to discover new targets and synergistic mechanisms of action including multicellular targets. In this work, we designed a new chemotherapeutic drug candidate against cancer, namely, [Ru(DIP)2(sq)](PF6) (Ru-sq) (DIP = 4,7-diphenyl-1,10-phenanthroline; sq = semiquinonate ligand). The aim was to combine the great potential expressed by Ru(II) polypyridyl complexes and the singular redox and biological properties associated with the catecholate moiety. Experimental evidence (e.g., X-ray crystallography, electron paramagnetic resonance, electrochemistry) demonstrates that the semiquinonate is the preferred oxidation state of the dioxo ligand in this complex. The biological activity of Ru-sq was then scrutinized in vitro and in vivo, and the results highlight the promising potential of this complex as a chemotherapeutic agent against cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , Quinonas/química , Quinonas/metabolismo , Rutênio/química , Rutênio/metabolismo , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Células HeLa , Humanos , Ligantes , Camundongos , Camundongos Nus , Oxirredução/efeitos dos fármacos , Quinonas/farmacologia , Rutênio/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
J Am Chem Soc ; 142(13): 6066-6084, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32109057

RESUMO

Due to the great potential expressed by an anticancer drug candidate previously reported by our group, namely, Ru-sq ([Ru(DIP)2(sq)](PF6) (DIP, 4,7-diphenyl-1,10-phenanthroline; sq, semiquinonate ligand), we describe in this work a structure-activity relationship (SAR) study that involves a broader range of derivatives resulting from the coordination of different catecholate-type dioxo ligands to the same Ru(DIP)2 core. In more detail, we chose catechols carrying either an electron-donating group (EDG) or an electron-withdrawing group (EWG) and investigated the physicochemical and biological properties of their complexes. Several pieces of experimental evidences demonstrated that the coordination of catechols bearing EDGs led to deep-red positively charged complexes 1-4 in which the preferred oxidation state of the dioxo ligand is the uninegatively charged semiquinonate. Complexes 5 and 6, on the other hand, are blue/violet neutral complexes, which carry an EWG-substituted dinegatively charged catecholate ligand. The biological investigation of complexes 1-6 led to the conclusion that the difference in their physicochemical properties has a strong impact on their biological activity. Thus, complexes 1-4 expressed much higher cytotoxicities than complexes 5 and 6. Complex 1 constitutes the most promising compound in the series and was selected for a more in depth biological investigation. Apart from its remarkably high cytotoxicity (IC50 = 0.07-0.7 µM in different cancerous cell lines), complex 1 was taken up by HeLa cells very efficiently by a passive transportation mechanism. Moreover, its moderate accumulation in several cellular compartments (i.e., nucleus, lysosomes, mitochondria, and cytoplasm) is extremely advantageous in the search for a potential drug with multiple modes of action. Further DNA metalation and metabolic studies pointed to the direct interaction of complex 1 with DNA and to the severe impairment of the mitochondrial function. Multiple targets, together with its outstanding cytotoxicity, make complex 1 a valuable candidate in the field of chemotherapy research. It is noteworthy that a preliminary biodistribution study on healthy mice demonstrated the suitability of complex 1 for further in vivo studies.

20.
Adv Mater ; 32(12): e1907390, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32064673

RESUMO

The switching behavior of surface-supported molecular units excited by current, light, or mechanical forces is determined by the shape of the adsorption potential. The ability to tailor the energy landscape in which a molecule resides at a surface gives the possibility of imposing a desired response, which is of paramount importance for the realization of molecular electronic units. Here, by means of scanning tunneling microscopy, a triazatruxene (TAT) molecule on Ag(111) is studied, which shows a switching behavior characterized by transitions of the molecule between three states, and which is attributed to three energetically degenerate bonding configurations. Upon tunneling current injection, the system can be excited and continuously driven, showing a switching directionality close to 100%. Two surface enantiomers of TAT show opposite switching directions pointing at the chirality of the energy landscape of the adsorption potential as a key ingredient for directional switching. Further, it is shown that by tuning the tunneling parameters, the symmetry of the adsorption potential can be controllably adjusted, leading to a suppression of the directionality or an inversion of the switching direction. The findings represent a molecule-surface model system exhibiting unprecedented control of the shape of its adsorption potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...