Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 36(7): 975-991, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37363877

RESUMO

Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.


Assuntos
Ecologia , Comportamento Predatório , Animais , Fenótipo
2.
J Evol Biol ; 36(7): 1020-1031, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36546702

RESUMO

Chemical defences often vary within and between populations both in quantity and quality, which is puzzling if prey survival is dependent on the strength of the defence. We investigated the within- and between-population variability in chemical defence of the wood tiger moth (Arctia plantaginis). The major components of its defences, SBMP (2-sec-butyl-3-methoxypyrazine) and IBMP (2-isobutyl-3-methoxypyrazine), are volatiles that deter bird attacks. We hypothesized that (1) variation in the chemical defences of male wood tiger moths reflects the local predation pressure; (2) observed differences in quantity and quality of defence among populations have a genetic basis; and (3) increasing concentrations of SBMP and IBMP will elicit greater aversive reactions in predators, with the two pyrazines having an additive effect on predators' avoidance. We found that (1) the chemical defence of wild moths partly reflects local predator selection: high predation pressure populations (Scotland and Georgia) had stronger chemical defences, but not lower variance, than the low-predation populations (Estonia and Finland). (2) Based on the common garden results, both genetic and environmental components seem to influence the strength of chemical defence in moth populations; and (3) IBMP alone did not provide protection against bird predators but worked against bird attacks only when combined with SBMP, and while SBMP was more effective at higher concentrations, IBMP was not. Altogether this suggests that, when it comes to pyrazine concentration, more is not always better, highlighting the importance of testing the efficacy of chemical defence and its components with relevant predators, as extrapolating from chemical data may be less than straightforward.


Assuntos
Mariposas , Animais , Masculino , Mariposas/genética , Aves , Pirazinas , Comportamento Predatório , Cor
3.
J Anim Ecol ; 91(4): 831-844, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34839542

RESUMO

Defensive chemicals are used by plants and animals to reduce the risk of predation through different mechanisms, including toxins that cause injury and harm (weapons) and unpalatable or odiferous compounds that prevent attacks (deterrents). However, whether effective defences are both toxins and deterrents, or work in just one modality is often unclear. In this study, our primary aim was to determine whether defensive compounds stored by nudibranch molluscs acted as weapons (in terms of being toxic), deterrents (in terms of being distasteful) or both. Our secondary aim was to investigate the response of different taxa to these defensive compounds. To do this, we identified secondary metabolites in 30 species of nudibranch molluscs and investigated their deterrent properties using antifeedant assays with three taxa: rock pool shrimp, Palaemon serenus, and two fish species: triggerfish Rhinecanthus aculeatus and toadfish Tetractenos hamiltoni. We compared these results to toxicity assays using brine shrimp Artemia sp. and previously published toxicity data with a damselfish Chromis viridis. Overall, we found no clear relationship between palatability and toxicity, but instead classified defensive compounds into the following categories: Class I & II-highly unpalatable and highly toxic; Class I-weakly unpalatable and highly toxic; Class II-highly unpalatable but weakly toxic; WR (weak response)-weakly unpalatable and weakly toxic. We also found eight extracts from six species that did not display activity in any assays indicating they may have very limited chemical defensive mechanisms (NR, no response). We found that the different classes of secondary metabolites were similarly unpalatable to fish and shrimp, except extracts from Phyllidiidae nudibranchs (isonitriles) that were highly unpalatable to shrimp but weakly unpalatable to fish. Our results pave the way towards better understanding how animal chemical defences work against a variety of predators. We highlight the need to disentangle weapons and deterrents in future work on anti-predator defences to better understand the foraging decisions faced by predators, the resultant selection pressures imposed on prey and the evolution of different anti-predator strategies.


Assuntos
Decápodes , Gastrópodes , Animais , Artemia , Gastrópodes/fisiologia , Comportamento Predatório
4.
Behav Ecol ; 31(3): 844-850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595271

RESUMO

To understand how variation in warning displays evolves and is maintained, we need to understand not only how perceivers of these traits select color and toxicity but also the sources of the genetic and phenotypic variation exposed to selection by them. We studied these aspects in the wood tiger moth Arctia plantaginis, which has two locally co-occurring male color morphs in Europe: yellow and white. When threatened, both morphs produce defensive secretions from their abdomen and from thoracic glands. Abdominal fluid has shown to be more important against invertebrate predators than avian predators, and the defensive secretion of the yellow morph is more effective against ants. Here, we focused on the morph-linked reproductive costs of secretion of the abdominal fluid and quantified the proportion of phenotypic and genetic variation in it. We hypothesized that, if yellow males pay higher reproductive costs for their more effective aposematic display, the subsequent higher mating success of white males could offer one explanation for the maintenance of the polymorphism. We first found that the heritable variation in the quantity of abdominal secretion was very low (h 2 = 0.006) and the quantity of defensive secretion was not dependent on the male morph. Second, deploying the abdominal defensive secretion decreased the reproductive output of both color morphs equally. This suggests that potential costs of pigment production and chemical defense against invertebrates are not linked in A. plantaginis. Furthermore, our results indicate that environmentally induced variation in chemical defense can alter an individual's fitness significantly.

5.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29875302

RESUMO

Mimicry of warning signals is common, and can be mutualistic when mimetic species harbour equal levels of defence (Müllerian), or parasitic when mimics are undefended but still gain protection from their resemblance to the model (Batesian). However, whether chemically defended mimics should be similar in terms of toxicity (i.e. causing damage to the consumer) and/or unpalatability (i.e. distasteful to consumer) is unclear and in many studies remains undifferentiated. In this study, we investigated the evolution of visual signals and chemical defences in a putative mimicry ring of nudibranch molluscs. First, we demonstrated that the appearance of a group of red spotted nudibranchs molluscs was similar from the perspective of potential fish predators using visual modelling and pattern analysis. Second, using phylogenetic reconstruction, we demonstrated that this colour pattern has evolved multiple times in distantly related individuals. Third, we showed that these nudibranchs contained different chemical profiles used for defensive purposes. Finally, we demonstrated that although levels of distastefulness towards Palaemon shrimp remained relatively constant between species, toxicity levels towards brine shrimp varied significantly. We highlight the need to disentangle toxicity and taste when considering chemical defences in aposematic and mimetic species, and discuss the implications for aposematic and mimicry signal evolution.


Assuntos
Evolução Biológica , Mimetismo Biológico , Cadeia Alimentar , Gastrópodes/fisiologia , Palaemonidae/fisiologia , Tetraodontiformes/fisiologia , Animais , Austrália , Cor , Filogenia , Paladar
6.
J Chem Ecol ; 44(4): 384-396, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29552702

RESUMO

Many plants and animals store toxic or unpalatable compounds in tissues that are easily encountered by predators during attack. Defensive compounds can be produced de novo, or obtained from dietary sources and stored directly without selection or modification, or can be selectively sequestered or biotransformed. Storage strategies should be optimized to produce effective defence mechanisms but also prevent autotoxicity of the host. Nudibranch molluscs utilize a diverse range of chemical defences, and we investigated the accumulation and distribution of defensive secondary metabolites in body tissues of 19 species of Chromodorididae nudibranchs. We report different patterns of distribution across tissues, where: 1) the mantle had more or different (but structurally related) compounds than the viscera; 2) all compounds in the mantle were also in the viscera; and 3) the mantle had fewer compounds than the viscera. We found no further examples of species that selectively store a single compound, previously reported in Chromodoris species. Consistent with other studies, we found high concentrations of metabolites in mantle rim tissues compared to the viscera. Using bioassays, compounds in the mantle were more toxic than compounds found in the viscera for Glossodoris vespa Rudman, 1990 and Ceratosoma brevicaudatum Abraham, 1876. In G. vespa, compounds in the mantle were also more unpalatable to palaemonid shrimp than compounds found in the viscera. This indicates that these species may modify compounds to increase bioactivity for defensive purposes and/or selectively store more toxic compounds. We highlight clear differences in the storage of sequestered chemical defences, which may have important implications for species to employ effective defences against a range of predators.


Assuntos
Produtos Biológicos/química , Gastrópodes/química , Animais , Artemia/efeitos dos fármacos , Artemia/fisiologia , Produtos Biológicos/análise , Produtos Biológicos/toxicidade , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/toxicidade , Gastrópodes/classificação , Gastrópodes/metabolismo , Macrolídeos/química , Macrolídeos/isolamento & purificação , Macrolídeos/toxicidade , Espectroscopia de Ressonância Magnética , Filogenia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/toxicidade , Espectrometria de Massas por Ionização por Electrospray
7.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28835556

RESUMO

Warning signal variation is ubiquitous but paradoxical: low variability should aid recognition and learning by predators. However, spatial variability in the direction and strength of selection for individual elements of the warning signal may allow phenotypic variation for some components, but not others. Variation in selection may occur if predators only learn particular colour pattern components rather than the entire signal. Here, we used a nudibranch mollusc, Goniobranchus splendidus, which exhibits a conspicuous red spot/white body/yellow rim colour pattern, to test this hypothesis. We first demonstrated that secondary metabolites stored within the nudibranch were unpalatable to a marine organism. Using pattern analysis, we demonstrated that the yellow rim remained invariable within and between populations; however, red spots varied significantly in both colour and pattern. In behavioural experiments, a potential fish predator, Rhinecanthus aculeatus, used the presence of the yellow rims to recognize and avoid warning signals. Yellow rims remained stable in the presence of high genetic divergence among populations. We therefore suggest that how predators learn warning signals may cause stabilizing selection on individual colour pattern elements, and will thus have important implications on the evolution of warning signals.


Assuntos
Peixes/fisiologia , Gastrópodes/genética , Aprendizagem , Pigmentação , Comportamento Predatório , Animais , Cor , Variação Genética , Genética Populacional , Seleção Genética
8.
J Nat Prod ; 80(3): 670-675, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28032760

RESUMO

Six new (1-6) spongian-16-one analogues have been characterized from the Australian nudibranch species Goniobranchus collingwoodi, along with four known spongian-16-one derivatives. The structures and relative configuration were suggested by spectroscopic analyses informed by molecular modeling. Dissection of animal tissue revealed that the mantle and viscera differ in their terpene composition. Whole body extracts were not toxic to brine shrimp (Artemia sp.), but were unpalatable to palaemon shrimp (Palaemon serenus) at a concentration found within the nudibranch. Individual terpenes were not cytotoxic to human lung (NCIH-460), colorectal (SW620), and liver (HepG2) cancer cells.


Assuntos
Antineoplásicos/isolamento & purificação , Diterpenos/isolamento & purificação , Gastrópodes/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Austrália , Diterpenos/química , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Estrutura Molecular
9.
PLoS One ; 11(1): e0145134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26788920

RESUMO

Natural products play an invaluable role as a starting point in the drug discovery process, and plants and animals use many interesting biologically active natural products as a chemical defense mechanism against predators. Among marine organisms, many nudibranch gastropods are known to derive defensive metabolites from the sponges they eat. Here we investigated the putative sequestration of the toxic compound latrunculin A--a 16-membered macrolide that prevents actin polymerization within cellular processes--which has been identified from sponge sources, by five closely related nudibranch molluscs of the genus Chromodoris. Only latrunculin A was present in the rim of the mantle of these species, where storage reservoirs containing secondary metabolites are located, whilst a variety of secondary metabolites were found in their viscera. The species studied thus selectively accumulate latrunculin A in the part of the mantle that is more exposed to potential predators. This study also demonstrates that latrunculin-containing sponges are not their sole food source. Latrunculin A was found to be several times more potent than other compounds present in these species of nudibranchs when tested by in vitro and in vivo toxicity assays. Anti-feedant assays also indicated that latrunculin A was unpalatable to rock pool shrimps, in a dose-dependent manner. These findings led us to propose that this group of nudibranchs has evolved means both to protect themselves from the toxicity of latrunculin A, and to accumulate this compound in the mantle rim for defensive purposes. The precise mechanism by which the nudibranchs sequester such a potent compound from sponges without disrupting their own key physiological processes is unclear, but this work paves the way for future studies in this direction. Finally, the possible occurrence of both visual and chemosensory Müllerian mimicry in the studied species is discussed.


Assuntos
Estruturas Animais/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Gastrópodes/metabolismo , Tiazolidinas/metabolismo , Ração Animal/classificação , Estruturas Animais/anatomia & histologia , Animais , Comportamento Animal , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Gastrópodes/anatomia & histologia , Gastrópodes/classificação , Poríferos/química , Poríferos/metabolismo , Tiazolidinas/química
10.
J Nat Prod ; 79(3): 477-83, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26698272

RESUMO

Three new norditerpenes (1, 6, and 7) and four diterpenes (2-5) with extensively rearranged carbon skeletons have been characterized from Australian nudibranchs. The relative configuration of the cyclopropyl-containing verrielactone (1) from Goniobranchus verrieri was suggested by spectroscopic analysis at 500 MHz informed by a combination of molecular modeling and DFT calculations. The nudibranchs G. splendidus and G. cf. splendidus provided 2-7, for which the structures and stereochemistry were deduced by 2D NMR studies at either 500 or 700 MHz. Each of the seven terpenoids exhibited a carbon skeleton modified from one of the tetrahydroaplysulphurin, spongionellin, or gracilane series of terpenes. A biosynthetic pathway to terpenes 1-7 from spongialactone is proposed.


Assuntos
Diterpenos/química , Diterpenos/isolamento & purificação , Gastrópodes/química , Animais , Austrália , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Terpenos/química
11.
Nat Prod Commun ; 11(7): 921-924, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30452163

RESUMO

Five new diterpenes (1-5), each with a highly oxygenated spongian framework, were characterized from an organic extract of a specimen of the nudibranch Goniobranchus splendidus collected from Eastern Australia. The new diterpene 7α-hydroxydendrillol-3 (6) was identified from specimens of Ardeodoris egretta. The structures and relative configurations of the six new metabolites have been elucidated by analysis of their spectroscopic data.


Assuntos
Moluscos/química , Animais , Diterpenos , Modelos Moleculares , Estrutura Molecular
12.
Beilstein J Org Chem ; 9: 2925-33, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24454572

RESUMO

A small sample of (-)-(5R,6Z)-dendrolasin-5-acetate, which was fully characterized by 2D NMR studies, was isolated from the nudibranch Hypselodoris jacksoni, along with the sesquiterpenes (+)-agassizin, (-)-furodysinin, (-)-euryfuran, (-)-dehydroherbadysidolide and (+)-pallescensone. A synthetic sample ([α]D -8.7) of the new metabolite was prepared by [1,2]-Wittig rearrangement of a geranylfuryl ether followed by acetylation of purified alcohol isomers. The absolute configuration at C-5 was established as R by the analysis of MPA ester derivatives of (Z)-5-hydroxydendrolasin obtained by preparative enantioselective HPLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...