Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 34(8): 692-706, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689397

RESUMO

Post-photosynthetic carbon isotope fractionation might alter the isotopic signal imprinted on organic matter (OM) during primary carbon fixation by Rubisco. To characterise the influence of post-photosynthetic processes, we investigated the effect of starch storage and remobilisation on the stable carbon isotope signature (δ13C) of different carbon pools in the Eucalyptus delegatensis R. T. Baker leaf and the potential carbon isotope fractionation associated with phloem transport and respiration. Twig phloem exudate and leaf water-soluble OM showed diel variations in δ13C of up to 2.5 and 2‰, respectively, with 13C enrichment during the night and depletion during the day. Damped diel variation was also evident in bulk lipids of the leaf and in the leaf wax fraction. δ13C of nocturnal phloem exudate OM corresponded with the δ13C of carbon released from starch. There was no change in δ13C of phloem carbon along the trunk. CO2 emitted from trunks and roots was 13C enriched compared with the potential organic substrate, and depleted compared with soil-emitted CO2. The results are consistent with transitory starch accumulation and remobilisation governing the diel rhythm of δ13C in phloem-transported OM and fragmentation fractionation occurring during respiration. When using δ13C of OM or CO2 for assessing ecosystem processes or plant reactions towards environmental constraints, post-photosynthetic discrimination should be considered.

2.
Funct Plant Biol ; 33(6): 521-530, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32689259

RESUMO

A recent study by Keppler et al. (2006; Nature 439, 187-191) demonstrated CH4 emission from living and dead plant tissues under aerobic conditions. This work included some calculations to extrapolate the findings from the laboratory to the global scale and led various commentators to question the value of planting trees as a greenhouse mitigation option. The experimental work of Keppler et al. (2006) appears to be largely sound, although some concerns remain about the quantification of emission rates. However, whilst accepting their basic findings, we are critical of the method used for extrapolating results to a global scale. Using the same basic information, we present alternative calculations to estimate global aerobic plant CH4 emissions as 10-60 Mt CH4 year-1. This estimate is much smaller than the 62-236 Mt CH4 year-1 reported in the original study and can be more readily reconciled within the uncertainties in the established sources and sinks in the global CH4 budget. We also assessed their findings in terms of their possible relevance for planting trees as a greenhouse mitigation option. We conclude that consideration of aerobic CH4 emissions from plants would reduce the benefit of planting trees by between 0 and 4.4%. Hence, any offset from CH4 emission is small in comparison to the significant benefit from carbon sequestration. However, much critical information is still lacking about aerobic CH4 emission from plants. For example, we do not yet know the underlying mechanism for aerobic CH4 emission, how CH4 emissions change with light, temperature and the physiological state of leaves, whether emissions change over time under constant conditions, whether they are related to photosynthesis and how they relate to the chemical composition of biomass. Therefore, the present calculations must be seen as a preliminary attempt to assess the global significance from a basis of limited information and are likely to be revised as further information becomes available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA