Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338473

RESUMO

A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C-N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol for C-N bond formation between N-nucleophiles and copper carbene complexes arising from the activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-based substrates was screened, yielding 2° or 3° amine products with acceptable to good yields under mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing relatively weak C-O or C-S bond formation under optimized conditions.

2.
Dalton Trans ; 53(7): 3180-3190, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38247368

RESUMO

A series of tridentate copper(II) N-heterocyclic carbene (NHC) complexes with imidazole, benzimidazole, and 5,6-dimethylbenzimidazole azole rings were synthesized and comprehensively characterized via X-ray crystallography, ESI-MS, cyclic voltammetry, and UV-Vis and EPR spectroscopic studies. These complexes were then utilized for the optimization of ketone reduction under sustainable conditions using 2-acetylpyridine and phenylsilane. The relationships between product formation, temperature, reaction time, and catalyst loading for the hydrogenation reactions are covered in detail. Reduction of eighteen different aliphatic, cyclic, and aromatic ketones were demonstrated, which were compatible to produce the corresponding products in moderate to good yields. These systems were used to develop related DNA-hybrid catalytic systems, but only supported weak enantioselectivity. Further thermodynamic experiments showed Cu-NHC complexes did not demonstrate specific binding to DNA, which is consistent with their limited selectivity.

3.
Meat Sci ; 206: 109343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717339

RESUMO

The umami sensation contributes to beef taste and acceptability. Inosine 5'- monophosphate (IMP), the most abundant 5'-ribonucleotide in meat, is known to impart an umami taste without the undesired side effects commonly associated with glutamate. Nevertheless, the investigation of IMP's role in beef flavor has thus far been overlooked. Traditional methods for detecting IMP have relied on liquid chromatography coupled with ultraviolet spectroscopy or mass spectrometry techniques. However, these methods are not practical for production settings due to the complexity and resource demands of sophisticated laboratory techniques. Alternative methods like cyclic voltammetry might offer more practical solutions for rapidly detecting IMP. The objectives of this study were to evaluate the efficiency of using electrochemistry and chromatography on differentiating beef strips spiked with different IMP contents. The IMP threshold was 0.30 mM determined by a trained panel using the Best Estimates Threshold method. Beef strip steaks of USDA Prime, Choice, and Select were spiked at 0.30 and 0.60 mM of IMP, based on green weight and an estimated moisture content of 65%. In this study, differences in the IMP content of steaks were not detected by liquid chromatography-mass spectrometry. However, the cyclic voltammetry approach differentiated IMP concentrations at 0.50 mM or above in aqueous solutions and subsequentially meat extracts from the buffered blank solutions. In conclusion, cyclic voltammetry holds potential as a rapid and effective approach for detecting IMP in beef and other meat products, offering promising applications for future research.


Assuntos
Inosina Monofosfato , Paladar , Animais , Bovinos , Inosina Monofosfato/análise , Eletroquímica , Inosina , Cromatografia
4.
Chemistry (Basel) ; 4(2): 560-575, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38031556

RESUMO

Arylboronic acids are commonly used in modern organic chemistry to form new C-C and C-heteroatom bonds. These activated organic synthons show reactivity with heteroatoms in a range of substrates under ambient oxidative conditions. This broad reactivity has limited their use in protic, renewable solvents like water, ethanol, and methanol. Here, we report our efforts to study and optimize the activation of arylboronic acids by a copper(II) N-heterocyclic carbene (NHC) complex in aqueous solution and in a range of alcohols to generate phenol and aryl ethers, respectively. The optimized reactivity showcases the ability to make targeted C-O bonds, but also identifies conditions where water and alcohol activation could be limiting for C-C and C-heteroatom bond-forming reactions. This copper(II) complex shows strong reactivity toward arylboronic acid activation in aqueous medium at ambient temperature. The relationship between product formation and temperature and catalyst loading are described. Additionally, the effects of buffer, pH, base, and co-solvent are explored with respect to phenol and ether generation reactions. Characterization of the new copper(II) NCN-pincer complex by X-ray crystallography, HR-MS, cyclic voltammetry, FT-IR and UV-Vis spectral studies is reported.

5.
Eur J Inorg Chem ; 2020(14): 1278-1285, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33986626

RESUMO

Complexes of copper and 1,10-phenanthroline have been utilized for organic transformations over the last 50 years. In many cases these systems are impacted by reaction conditions and perform best under an inert atmosphere. Here we explore the role the 1,10-phenanthroline ligand plays on the electronic structure and redox properties of copper coordination complexes, and what benefit related ligands may provide to enhance copper-based coupling reactions. Copper(II) triflate complexes bearing 1,10-phenanthroline (phen), ([Cu(phen)2(OTf)]OTf, 1) and oxidized derivatives of phen including [Cu(edhp)2](OTf)2 (2), [Cu(pdo)2](OTf)2 (3), [Cu(dafo)2](OTf)2 (4) were prepared and characterized. X-ray crystallographic data show these related ligands subtly impacted the coordination geometry of the copper(II) ion. Complexes 1-3 had only incremental changes to the redox properties of the copper ions, complex 4 showed a drastically different redox potential affording a remarkably air stable copper(I) complex. These complexes 1-4 were then used to catalyze the C-N bond forming cross coupling between imidazole and various boronic acid substrates, where the increased stability of the copper(I) species in complex 4 appears to better support these CEL cross couplings.

6.
ACS Appl Mater Interfaces ; 10(25): 21262-21280, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29863835

RESUMO

We develop zirconium-templated NiO/NiOOH nanosheets on nickel foam and polypyrrole-embedded in exfoliated carbon fiber cloth as complementary electrodes for an asymmetric battery-type supercapacitor device. We achieve high volumetric energy and power density by the modification of commercially available current collectors (CCs). The modified CCs provide the source of active material, actively participate in the charge storage process, provide a larger surface area for active material loading, need no additional binders or conductive additives, and retain the ability to act as the CC. Nickel foam (NF) CCs are modified by use of a soft-templating/solvothermal treatment to generate NiO/NiOOH nanosheets, where the NF is the source of Ni for the synthesis. Carbon-fiber cloth (CFC) CCs are modified by an electrochemical oxidation/reduction process to generate exfoliated core-shell structures (ECFC). Electropolymerization of pyrrole into the shell structure produces polypyrrole embedded in exfoliated core-shell material (PPy@rECFC). Battery-type supercapacitor devices are produced with NiO/NiOOH@NF and PPy@rECFC as positive and negative electrodes, respectively, to demonstrate the utility of this approach. Volumetric energy densities for the full-cell device are in the range of 2.60-4.12 mWh cm-3 with corresponding power densities in the range of 9.17-425.58 mW cm-3. This is comparable to thin-film lithium-ion batteries (0.3-10 mWh cm-3) and better than some commercial supercapacitors (<1 mWh cm-3).1 The energy and power density is impressive considering that it was calculated using the entire cell volume (active materials, separator, and both CCs). The full-cell device is highly stable, retaining 96% and 88% of capacity after 2000 and 5000 cycles, respectively. These results demonstrate the utility of directly modifying the CCs and suggest a new method to produce high volumetric energy density and power density storage devices.

7.
ACS Appl Mater Interfaces ; 9(8): 6967-6978, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28085239

RESUMO

Nanostructured nickel cobalt sulfide (Ni4.5Co4.5S8) has been prepared through a single-step pulse-electrodeposition method. Iron oxide nanosheets at hollow graphite shells (Fe3O4@g-shells) were prepared from graphite-coated iron carbide/α-Fe (g-Fe3C/Fe) in a two-step annealing/electrochemical cycling process. Electrochemical characterization of the Ni4.5Co4.5S8 and g-Fe3C/Fe materials showed that both have high specific capacities (206 mAh g-1 and 147 mAh g-1 at 1 A g-1) and excellent rate capabilities (∼95% and ∼83% retention at 20 A g-1, respectively). To demonstrate the advantageous pairing of these high rate materials, a full-cell battery with supercapacitor-like power behavior was assembled with Ni4.5Co4.5S8 and g-Fe3C/Fe as the positive and negative electrodes, respectively. The (Ni4.5Co4.5S8//g-Fe3C/Fe) device could be reversibly operated in a 0.0-1.6 V potential window, delivering an impressive specific energy of 89 Wh kg-1 at 1.1 kW kg-1 and a remarkable rate performance of 61 Wh kg-1 at a very high specific power of 38.5 kW kg-1. Additionally, long-term cycling demonstrated that the asymmetric full cell assembly retained 91% of its initial specific capacity after 2500 cycles at 40 A g-1. The performance features of this device are among the best for iron oxide/hydroxide and bimetallic sulfide based energy storage devices to date, thereby giving insight into design principles for the next generation high-energy-density devices.

8.
Biomicrofluidics ; 8(2): 021803, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24753734

RESUMO

Alternating-current (AC) electrokinetics involve the movement and behaviors of particles or cells. Many applications, including dielectrophoretic manipulations, are dependent upon charge interactions between the cell or particle and the surrounding medium. Medium concentrations are traditionally treated as spatially uniform in both theoretical models and experiments. Human red blood cells (RBCs) are observed to crenate, or shrink due to changing osmotic pressure, over 10 min experiments in non-uniform AC electric fields. Cell crenation magnitude is examined as functions of frequency from 250 kHz to 1 MHz and potential from 10 Vpp to 17.5 Vpp over a 100 µm perpendicular electrode gap. Experimental results show higher peak to peak potential and lower frequency lead to greater cell volume crenation up to a maximum volume loss of 20%. A series of experiments are conducted to elucidate the physical mechanisms behind the red blood cell crenation. Non-uniform and uniform electrode systems as well as high and low ion concentration experiments are compared and illustrate that AC electroporation, system temperature, rapid temperature changes, medium pH, electrode reactions, and convection do not account for the crenation behaviors observed. AC electroosmotic was found to be negligible at these conditions and AC electrothermal fluid flows were found to reduce RBC crenation behaviors. These cell deformations were attributed to medium hypertonicity induced by ion concentration gradients in the spatially nonuniform AC electric fields.

9.
Biomicrofluidics ; 8(6): 064126, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25553200

RESUMO

AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc ), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc . In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H(+)] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc ). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H(+)] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 µm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position.

10.
Anal Chem ; 80(10): 3612-21, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18407616

RESUMO

We have developed a new imaging method for scanning electrochemical microscopy (SECM) employing fast-scan anodic stripping voltammetry (ASV) to provide sensitive and selective imaging of multiple chemical species at interfaces immersed in solution. A rapid cyclic voltammetry scan (100 V/s) is used along with a short preconcentration time (300-750 ms) to allow images to be acquired in a normal SECM time frame. A Hg-Pt film electrode is developed having an equivalent Hg thickness of 40 nm that has good sensitivity at short preconcentration times and also retains thin-film behavior with high-speed voltammetric stripping. Fast-scan anodic stripping currents are shown to be linear for 1-100 microM of Pb (2+) and Cd (2+) solutions using a preconcentration time of 300 ms. SECM images showing the presence of Pb (2+) and Cd (2+) at concentrations as low as 1 microM are presented. In addition, a single ASV-SECM image is shown to produce unique concentration maps indicating Cd (2+) and Pb (2+), generated in situ from a corroding sample, while simultaneously detecting the depletion of O 2 at this sample. The transient voltammetric response at the film electrode is simulated and shows good agreement with the experimental behavior. We discuss the behavior of images and concentration profiles obtained with different imaging conditions and show that mass-transport limitations in the tip-substrate gap can induce dissolution. ASV-SECM can thus be used to detect and study induced dissolution not only at bulk metal surfaces but also on underpotential deposition layers, in this case Cd and Pb on Pt. In addition, we discuss how surface diffusion phenomena may relate to the observed ASV-SECM behavior.

11.
Langmuir ; 23(17): 9098-103, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17636990

RESUMO

In situ electrochemical scanning tunneling microscopy is used to study the coarsening of platinum islands at potentials of 0.4, 0.5, and 0.6 V in the double-layer region. Several interesting surface island reconstruction processes were observed, namely, (1) growth of small polycrystalline platinum islands; (2) shape- and size-limited platinum island growth; and (3) growth of platinum islands accompanied by disappearance of nearby islands. It is evident that these potential-induced coarsening processes can be explained by Gibbs-Thomson theory as a variant of Ostwald ripening. Details of the island reconstruction processes are described, and the possible influences of these phenomena on fuel cell operation are discussed.

12.
Anal Chem ; 79(13): 4931-41, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17550230

RESUMO

Fast-scan cyclic voltammetry at scan rates between 5 and 1000 V s(-1) was performed at the tip of a scanning electrochemical microscope immersed in a solution of redox mediator. The effect of conducting and insulating substrates on the voltammetric signal was investigated as a function of scan rate and tip-substrate distance. It was found that diffusional interactions between the tip and the substrate are greatest at lower scan rates and on the reverse sweep of the voltammogram. At the fastest scan rates used, the tip could be brought to with 1 microm of the substrate without appreciable perturbation of the voltammogram. By selecting scan rates and tip-substrate distances such that feedback effects were negligible, it was possible to image the diffusion layer of a 10 microm Pt substrate electrode. With the tip placed 1 microm above a biological cell, tip-substrate diffusional interactions were greatly diminished at a scan rate of 100 V s(-1) and absent at a scan rate of 1000 V s(-1). These results suggest conditions can be selected that allow chemical imaging of substrates without the feedback interactions typically encountered in scanning electrochemical microscopy.


Assuntos
Microscopia de Varredura por Sonda/métodos , Platina/química , Compostos de Rutênio/análise , Carbono/química , Difusão , Condutividade Elétrica , Eletroquímica , Eletrodos , Oxirredução , Compostos de Rutênio/química , Sensibilidade e Especificidade , Soluções/química , Fatores de Tempo
13.
Anal Chem ; 77(4): 1111-7, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15858993

RESUMO

Undifferentiated and differentiated PC12 cells were imaged with the constant-distance mode of scanning electrochemical microscopy (SECM) using carbon ring and carbon fiber tips. Two types of feedback signals were used for distance control: the electrolysis current of a mediator (constant-current mode) and the impedance measured by the SECM tip (constant-impedance mode). The highest resolution was achieved using carbon ring electrodes with the constant-current mode. However, the constant-impedance mode has the important advantages that topography and faradaic current can be measured simultaneously, and because no mediator is required, the imaging can take place directly in the cell growth media. It was found that vesicular release events do not measurably alter the impedance, but the depolarizing solution, 105 mM K+, produces a dramatic impedance change such that constant-distance imaging cannot be performed during application of the stimulus. However, by operating the tip in the constant-height mode, cell morphology (via a change in impedance) and vesicular release could be detected simultaneously while moving the tip across the cell. This work represents a significant improvement over previous SECM imaging of model neurons, and it demonstrates that the combination of amperometry and constant-impedance SECM has the potential to be a powerful tool for investigating the spatial distribution of neurotransmitter release in vitro.


Assuntos
Eletroquímica/métodos , Microeletrodos , Microscopia Eletrônica de Varredura/métodos , Neurotransmissores/metabolismo , Animais , Impedância Elétrica , Células PC12 , Ratos
14.
Anal Chem ; 75(3): 563-71, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12585485

RESUMO

Living PC12 cells, a model cell type for studying neuronal function, were imaged using the negative feedback mode of a scanning electrochemical microscope (SECM). Six biocompatible redox mediators were successfully identified from a large pool of candidates and were then used for imaging PC12 cells before and after exposure to nerve growth factor (NGF). When exposed to NGF, cells differentiate into a neuron phenotype by growing narrow neurites (1-2 microm wide) that can extend > 100 microm from the cell proper. We demonstrate that carbon fiber electrodes with reduced tip diameters can be used for imaging both the cell proper and these neurites. Regions of decreased current, possibly resulting from raised features not identifiable by light microscopy, are clearly evident in the SECM images. Changes in the morphology of undifferentiated PC12 cells could be detected in real time with the SECM. After exposure to hypotonic and hypertonic solutions, reversible changes in cell height of <2 microm were measured.


Assuntos
Microscopia Eletrônica de Varredura/instrumentação , Neurônios/citologia , Animais , Diagnóstico por Imagem , Eletroquímica/instrumentação , Microeletrodos , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...