Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 186: 71-82, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30012420

RESUMO

Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine disrupting chemical linked to cancer and a common drinking water contaminant. This study further investigates ATZ-related developmental toxicity by testing the following hypotheses in zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic ATZ exposure alters brain development and function; and embryonic ATZ exposure changes protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple embryonic time points to determine normal expression and if ATZ exposure altered expression. Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression changes before 72 h. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results indicate embryonic ATZ toxicity involves interactions of multiple pathways. SIGNIFICANCE: This is the first report of proteomic alterations following embryonic exposure to atrazine, an environmentally persistent pesticide and common water contaminant. Although the transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been reported, neither the time at which gene expression changes occur nor the resulting proteomic changes have been investigated. This study seeks to address these knowledge gaps by evaluating atrazine's effect on gene expression through multiple time points during embryogenesis, and correlating changes in gene expression to pathological alterations in brain length and functional changes in behavior. Finally, pathway analysis of the proteomic alterations identifies connections between the molecular changes and functional outcomes associated with embryonic atrazine exposure.


Assuntos
Atrazina/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteômica , Animais , Atrazina/toxicidade , Encéfalo/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário , Disruptores Endócrinos/farmacologia , Disruptores Endócrinos/toxicidade , Herbicidas/farmacologia , Herbicidas/toxicidade , Larva/efeitos dos fármacos , Proteínas/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Peixe-Zebra/embriologia
2.
Metallomics ; 10(3): 463-473, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29485154

RESUMO

Coal mining is one of the economic activities with the greatest impact on environmental quality. At all stages contaminants are released as particulates such as coal dust. The first aim of this study was to obtain an aqueous coal dust extract and characterize its composition in terms of trace elements by ICP-MS. In addition, the developmental toxicity of the aqueous coal extract was evaluated using zebrafish (Danio rerio) after exposure to different concentrations (0-1000 ppm; µg mL-1) to establish acute toxicity, morphology and transcriptome changes. Trace elements within the aqueous coal dust extract present at the highest concentrations (>10 ppb) included Sr, Zn, Ba, As, Cu and Se. In addition, Cd and Pb were found in lower concentrations. No significant difference in mortality was observed (p > 0.05), but a delay in hatching was found at 0.1 and 1000 ppm (p < 0.05). No significant differences in morphological characteristics were observed in any of the treatment groups (p > 0.05). Transcriptomic results of zebrafish larvae revealed alterations in 77, 61 and 1376 genes in the 1, 10, and 100 ppm groups, respectively. Gene ontology analysis identified gene alterations associated with the development and function of connective tissue and the hematological system, as well as pathways associated with apoptosis, the cell cycle, transcription, and oxidative stress including the MAPK signaling pathway. In addition, altered genes were associated with cancer; connective tissue, muscular, and skeletal disorders; and immunological and inflammatory diseases. Overall, this is the first study to characterize gene expression alterations in response to developmental exposure to aqueous coal dust residue from coal mining with transcriptome results signifying functions and systems to target in future studies.


Assuntos
Carvão Mineral/toxicidade , Tecido Conjuntivo/patologia , Poeira/análise , Regulação da Expressão Gênica no Desenvolvimento , Doenças Hematológicas/patologia , Doenças do Sistema Imunitário/patologia , Inflamação/patologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Poluentes Ambientais/toxicidade , Doenças Hematológicas/induzido quimicamente , Doenças Hematológicas/genética , Doenças do Sistema Imunitário/induzido quimicamente , Doenças do Sistema Imunitário/genética , Inflamação/induzido quimicamente , Inflamação/genética , Transcriptoma , Peixe-Zebra/genética
3.
Cell Rep ; 22(7): 1810-1823, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444433

RESUMO

MicroRNA-223 is known as a myeloid-enriched anti-inflammatory microRNA that is dysregulated in numerous inflammatory conditions. Here, we report that neutrophilic inflammation (wound response) is augmented in miR-223-deficient zebrafish, due primarily to elevated activation of the canonical nuclear factor κB (NF-κB) pathway. NF-κB over-activation is restricted to the basal layer of the surface epithelium, although miR-223 is detected throughout the epithelium and in phagocytes. Not only phagocytes but also epithelial cells are involved in miR-223-mediated regulation of neutrophils' wound response and NF-κB activation. Cul1a/b, Traf6, and Tab1 are identified as direct targets of miR-223, and their levels rise in injured epithelium lacking miR-223. In addition, miR-223 is expressed in cultured human bronchial epithelial cells, where it also downregulates NF-κB signaling. Together, this direct connection between miR-223 and the canonical NF-κB pathway provides a mechanistic understanding of the multifaceted role of miR-223 and highlights the relevance of epithelial cells in dampening neutrophil activation.


Assuntos
Inflamação/patologia , Queratinócitos/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Neutrófilos/patologia , Transdução de Sinais , Nadadeiras de Animais/fisiologia , Animais , Sequência de Bases , Brônquios/citologia , Embrião não Mamífero/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , MicroRNAs/genética , Neutrófilos/metabolismo , Fagócitos/metabolismo , Regeneração , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Food Chem Toxicol ; 109(Pt 1): 727-734, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28859886

RESUMO

Atrazine, a herbicide used on agricultural crops is widely applied in the Midwestern United States as well as other areas of the globe. Atrazine frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. Previous studies have reported morphological, hormonal, and molecular alterations due to developmental and adulthood atrazine exposure; however, studies examining epigenetic alterations are limited. In this study, the effects of atrazine exposure on DNA methyltransferase (DNMT) activity and kinetics were evaluated. Global DNA methylation levels and dnmt expression in zebrafish larvae exposed to 0, 3, or 30 parts per billion (ppb) atrazine throughout embryogenesis was then assessed. Results indicate that atrazine significantly decreased the activity of maintenance DNMTs and that the inhibition mechanism can be described using non-competitive Michaelis-Menten kinetics. Furthermore, results show that an embryonic atrazine exposure decreases global methylation levels and the expression of dnmt4 and dnmt5. These findings indicate that atrazine exposure can decrease the expression and activity of DNMTs, leading to decreased DNA methylation levels.


Assuntos
Atrazina/toxicidade , Metilação de DNA/efeitos dos fármacos , DNA-Citosina Metilases/genética , Herbicidas/toxicidade , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , DNA-Citosina Metilases/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...