Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738621

RESUMO

Research on ribonucleic acid (RNA) structures and functions benefits from easy-to-use tools for computational prediction and analyses of RNA three-dimensional (3D) structure. The SimRNAweb server version 2.0 offers an enhanced, user-friendly platform for RNA 3D structure prediction and analysis of RNA folding trajectories based on the SimRNA method. SimRNA employs a coarse-grained model, Monte Carlo sampling and statistical potentials to explore RNA conformational space, optionally guided by spatial restraints. Recognized for its accuracy in RNA 3D structure prediction in RNA-Puzzles and CASP competitions, SimRNA is particularly useful for incorporating restraints based on experimental data. The new server version introduces performance optimizations and extends user control over simulations and the processing of results. It allows the application of various hard and soft restraints, accommodating alternative structures involving canonical and noncanonical base pairs and unpaired residues, while also integrating data from chemical probing methods. Enhanced features include an improved analysis of folding trajectories, offering advanced clustering options and multiple analyses of the generated trajectories. These updates provide comprehensive tools for detailed RNA structure analysis. SimRNAweb v2.0 significantly broadens the scope of RNA modeling, emphasizing flexibility and user-defined parameter control. The web server is available at https://genesilico.pl/SimRNAweb.

2.
Proteins ; 91(12): 1800-1810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37622458

RESUMO

Ribonucleic acid (RNA) molecules serve as master regulators of cells by encoding their biological function in the ribonucleotide sequence, particularly their ability to interact with other molecules. To understand how RNA molecules perform their biological tasks and to design new sequences with specific functions, it is of great benefit to be able to computationally predict how RNA folds and interacts in the cellular environment. Our workflow for computational modeling of the 3D structures of RNA and its interactions with other molecules uses a set of methods developed in our laboratory, including MeSSPredRNA for predicting canonical and non-canonical base pairs, PARNASSUS for detecting remote homology based on comparisons of sequences and secondary structures, ModeRNA for comparative modeling, the SimRNA family of programs for modeling RNA 3D structure and its complexes with other molecules, and QRNAS for model refinement. In this study, we present the results of testing this workflow in predicting RNA 3D structures in the CASP15 experiment. The overall high score of the computational models predicted by our group demonstrates the robustness of our workflow and its individual components in terms of predicting RNA 3D structures of acceptable quality that are close to the target structures. However, the variance in prediction quality is still quite high, and the results are still too far from the level of protein 3D structure predictions. This exercise led us to consider several improvements, especially to better predict and enforce stacking interactions and non-canonical base pairs.


Assuntos
RNA , RNA/química , Conformação de Ácido Nucleico , Modelos Moleculares , Pareamento de Bases , Simulação por Computador
3.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077037

RESUMO

RNA is a unique biomolecule that is involved in a variety of fundamental biological functions, all of which depend solely on its structure and dynamics. Since the experimental determination of crystal RNA structures is laborious, computational 3D structure prediction methods are experiencing an ongoing and thriving development. Such methods can lead to many models; thus, it is necessary to build comparisons and extract common structural motifs for further medical or biological studies. Here, we introduce a computational pipeline dedicated to reference-free high-throughput comparative analysis of 3D RNA structures. We show its application in the RNA-Puzzles challenge, in which five participating groups attempted to predict the three-dimensional structures of 5'- and 3'-untranslated regions (UTRs) of the SARS-CoV-2 genome. We report the results of this puzzle and discuss the structural motifs obtained from the analysis. All simulated models and tools incorporated into the pipeline are open to scientific and academic use.


Assuntos
COVID-19 , RNA , Regiões 3' não Traduzidas , Humanos , Conformação de Ácido Nucleico , RNA/química , SARS-CoV-2
4.
Methods Mol Biol ; 2376: 399-416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34845623

RESUMO

The physics-based united-residue (UNRES) model of proteins ( www.unres.pl ) has been designed to carry out large-scale simulations of protein folding. The force field has been derived and parameterized based on the principles of statistical-mechanics, which makes it independent of structural databases and applicable to treat nonstandard situations such as, proteins that contain D-amino-acid residues. Powered by Langevin dynamics and its replica-exchange extensions, UNRES has found a variety of applications, including ab initio and database-assisted protein-structure prediction, simulating protein-folding pathways, exploring protein free-energy landscapes, and solving biological problems. This chapter provides a summary of UNRES and a guide for potential users regarding the application of the UNRES package in a variety of research tasks.


Assuntos
Conformação Proteica , Entropia , Simulação de Dinâmica Molecular , Dobramento de Proteína , Proteínas
5.
Nucleic Acids Res ; 48(22): 12436-12452, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33166999

RESUMO

SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome, whose outbreak caused the ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, only a handful of functionally-conserved coronavirus structural RNA elements have been identified to date. Here, we performed RNA structure probing to obtain single-base resolution secondary structure maps of the full SARS-CoV-2 coronavirus genome both in vitro and in living infected cells. Probing data recapitulate the previously described coronavirus RNA elements (5' UTR and s2m), and reveal new structures. Of these, ∼10.2% show significant covariation among SARS-CoV-2 and other coronaviruses, hinting at their functionally-conserved role. Secondary structure-restrained 3D modeling of these segments further allowed for the identification of putative druggable pockets. In addition, we identify a set of single-stranded segments in vivo, showing high sequence conservation, suitable for the development of antisense oligonucleotide therapeutics. Collectively, our work lays the foundation for the development of innovative RNA-targeted therapeutic strategies to fight SARS-related infections.


Assuntos
COVID-19/prevenção & controle , Genoma Viral/genética , Conformação de Ácido Nucleico , RNA Viral/química , SARS-CoV-2/genética , Regiões 5' não Traduzidas/genética , Algoritmos , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Sequência de Bases , Sítios de Ligação/genética , COVID-19/epidemiologia , COVID-19/virologia , Sequência Conservada/genética , Humanos , Modelos Moleculares , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia
6.
Methods Mol Biol ; 2165: 103-125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32621221

RESUMO

The molecules of the ribonucleic acid (RNA) perform a variety of vital roles in all living cells. Their biological function depends on their structure and dynamics, both of which are difficult to experimentally determine but can be theoretically inferred based on the RNA sequence. SimRNA is one of the computational methods for molecular simulations of RNA 3D structure formation. The method is based on a simplified (coarse-grained) representation of nucleotide chains, a statistically derived model of interactions (statistical potential), and the Monte Carlo method as a conformational sampling scheme.The current version of SimRNA (3.22) is able to predict basic topologies of RNA molecules with sizes up to about 50-70 nucleotides, based on their sequences only, and larger molecules if supplied with appropriate distance restraints. The user can specify various types of restraints, including secondary structure, pairwise atom-atom distances, and positions of atoms. SimRNA can be also used for studying systems composed of several chains of RNA. SimRNA is a folding simulations method, thus it allows for examining folding pathways, getting an approximate view of the energy landscapes.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de RNA , RNA/química , Método de Monte Carlo
7.
Nucleic Acids Res ; 48(W1): W292-W299, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32504492

RESUMO

RNA molecules play key roles in all living cells. Knowledge of the structural characteristics of RNA molecules allows for a better understanding of the mechanisms of their action. RNA chemical probing allows us to study the susceptibility of nucleotides to chemical modification, and the information obtained can be used to guide secondary structure prediction. These experimental results can be analyzed using various computational tools, which, however, requires additional, tedious steps (e.g., further normalization of the reactivities and visualization of the results), for which there are no fully automated methods. Here, we introduce RNAProbe, a web server that facilitates normalization, analysis, and visualization of the low-pass SHAPE, DMS and CMCT probing results with the modification sites detected by capillary electrophoresis. RNAProbe automatically analyzes chemical probing output data and turns tedious manual work into a one-minute assignment. RNAProbe performs normalization based on a well-established protocol, utilizes recognized secondary structure prediction methods, and generates high-quality images with structure representations and reactivity heatmaps. It summarizes the results in the form of a spreadsheet, which can be used for comparative analyses between experiments. Results of predictions with normalized reactivities are also collected in text files, providing interoperability with bioinformatics workflows. RNAProbe is available at https://rnaprobe.genesilico.pl.


Assuntos
RNA/química , Software , Internet , Conformação de Ácido Nucleico , Riboswitch , Análise de Sequência de RNA
8.
Sci Rep ; 8(1): 9939, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967418

RESUMO

Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP. Members of the WeFold coopetition (cooperation and competition) participated in CASP as individual teams, but also shared components of their methods to create hybrid pipelines and actively contributed to this effort. We assert that the scale and diversity of integrative prediction pipelines could not have been achieved by any individual lab or even by any collaboration among a few partners. The models contributed by the participating groups and generated by the pipelines are publicly available at the WeFold website providing a wealth of data that remains to be tapped. Here, we analyze the results of the 2014 and 2016 pipelines showing improvements according to the CASP assessment as well as areas that require further adjustments and research.


Assuntos
Caspase 12/metabolismo , Caspases/metabolismo , Biologia Computacional/métodos , Modelos Moleculares , Software , Caspase 12/química , Caspases/química , Humanos , Conformação Proteica
9.
Nucleic Acids Res ; 46(D1): D202-D205, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29069520

RESUMO

RNArchitecture is a database that provides a comprehensive description of relationships between known families of structured non-coding RNAs, with a focus on structural similarities. The classification is hierarchical and similar to the system used in the SCOP and CATH databases of protein structures. Its central level is Family, which builds on the Rfam catalog and gathers closely related RNAs. Consensus structures of Families are described with a reduced secondary structure representation. Evolutionarily related Families are grouped into Superfamilies. Similar structures are further grouped into Architectures. The highest level, Class, organizes families into very broad structural categories, such as simple or complex structured RNAs. Some groups at different levels of the hierarchy are currently labeled as 'unclassified'. The classification is expected to evolve as new data become available. For each Family with an experimentally determined three-diemsional (3D) structure(s), a representative one is provided. RNArchitecture also presents theoretical models of RNA 3D structure and is open for submission of structural models by users. Compared to other databases, RNArchitecture is unique in its focus on structure-based RNA classification, and in providing a platform for storing RNA 3D structure predictions. RNArchitecture can be accessed at http://iimcb.genesilico.pl/RNArchitecture/.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA/química , Internet , Estrutura Molecular , Conformação de Ácido Nucleico , RNA/classificação , RNA/genética
10.
Nucleic Acids Res ; 46(D1): D303-D307, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29106616

RESUMO

MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. In the current database version, we included the following new features and data: extended mass spectrometry and liquid chromatography data for modified nucleosides; links between human tRNA sequences and MINTbase - a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments; new, machine-friendly system of unified abbreviations for modified nucleoside names; sets of modified tRNA sequences for two bacterial species, updated collection of mammalian tRNA modifications, 19 newly identified modified ribonucleosides and 66 functionally characterized proteins involved in RNA modification. Data from MODOMICS have been linked to the RNAcentral database of RNA sequences. MODOMICS is available at http://modomics.genesilico.pl.


Assuntos
Bases de Dados Genéticas , RNA/química , RNA/metabolismo , Ribonucleosídeos/química , Ribonucleosídeos/metabolismo , Cromatografia Líquida , Humanos , Espectrometria de Massas , RNA de Transferência/química , RNA de Transferência/metabolismo , Terminologia como Assunto
11.
J Chem Inf Model ; 55(9): 2050-70, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26263302

RESUMO

A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Halabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + ß proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + ß protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Calibragem , Funções Verossimilhança , Modelos Biológicos
12.
J Mol Model ; 20(8): 2306, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25024008

RESUMO

A unified coarse-grained model of three major classes of biological molecules--proteins, nucleic acids, and polysaccharides--has been developed. It is based on the observations that the repeated units of biopolymers (peptide groups, nucleic acid bases, sugar rings) are highly polar and their charge distributions can be represented crudely as point multipoles. The model is an extension of the united residue (UNRES) coarse-grained model of proteins developed previously in our laboratory. The respective force fields are defined as the potentials of mean force of biomacromolecules immersed in water, where all degrees of freedom not considered in the model have been averaged out. Reducing the representation to one center per polar interaction site leads to the representation of average site-site interactions as mean-field dipole-dipole interactions. Further expansion of the potentials of mean force of biopolymer chains into Kubo's cluster-cumulant series leads to the appearance of mean-field dipole-dipole interactions, averaged in the context of local interactions within a biopolymer unit. These mean-field interactions account for the formation of regular structures encountered in biomacromolecules, e.g., α-helices and ß-sheets in proteins, double helices in nucleic acids, and helicoidally packed structures in polysaccharides, which enables us to use a greatly reduced number of interacting sites without sacrificing the ability to reproduce the correct architecture. This reduction results in an extension of the simulation timescale by more than four orders of magnitude compared to the all-atom representation. Examples of the performance of the model are presented.


Assuntos
Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Ácidos Nucleicos/química , Peptídeos/química , Polissacarídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/química
13.
Proteins ; 82(9): 1850-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24677212

RESUMO

The protein structure prediction problem continues to elude scientists. Despite the introduction of many methods, only modest gains were made over the last decade for certain classes of prediction targets. To address this challenge, a social-media based worldwide collaborative effort, named WeFold, was undertaken by 13 labs. During the collaboration, the laboratories were simultaneously competing with each other. Here, we present the first attempt at "coopetition" in scientific research applied to the protein structure prediction and refinement problems. The coopetition was possible by allowing the participating labs to contribute different components of their protein structure prediction pipelines and create new hybrid pipelines that they tested during CASP10. This manuscript describes both successes and areas needing improvement as identified throughout the first WeFold experiment and discusses the efforts that are underway to advance this initiative. A footprint of all contributions and structures are publicly accessible at http://www.wefold.org.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Comportamento Cooperativo , Estrutura Terciária de Proteína , Proteínas/ultraestrutura , Humanos , Modelos Moleculares , Projetos de Pesquisa , Jogos de Vídeo
14.
Proc Natl Acad Sci U S A ; 110(37): 14936-41, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980156

RESUMO

The performance of the physics-based protocol, whose main component is the United Residue (UNRES) physics-based coarse-grained force field, developed in our laboratory for the prediction of protein structure from amino acid sequence, is illustrated. Candidate models are selected, based on probabilities of the conformational families determined by multiplexed replica-exchange simulations, from the 10th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP10). For target T0663, classified as a new fold, which consists of two domains homologous to those of known proteins, UNRES predicted the correct symmetry of packing, in which the domains are rotated with respect to each other by 180° in the experimental structure. By contrast, models obtained by knowledge-based methods, in which each domain is modeled very accurately but not rotated, resulted in incorrect packing. Two UNRES models of this target were featured by the assessors. Correct domain packing was also predicted by UNRES for the homologous target T0644, which has a similar structure to that of T0663, except that the two domains are not rotated. Predictions for two other targets, T0668 and T0684_D2, are among the best ones by global distance test score. These results suggest that our physics-based method has substantial predictive power. In particular, it has the ability to predict domain-domain orientations, which is a significant advance in the state of the art.


Assuntos
Modelos Moleculares , Proteínas/química , Fenômenos Biofísicos , Humanos , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...