Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
Magn Reson Med ; 90(4): 1610-1624, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37279008

RESUMO

PURPOSE: Water saturation shift referencing (WASSR) Z-spectra are used commonly for field referencing in chemical exchange saturation transfer (CEST) MRI. However, their analysis using least-squares (LS) Lorentzian fitting is time-consuming and prone to errors because of the unavoidable noise in vivo. A deep learning-based single Lorentzian Fitting Network (sLoFNet) is proposed to overcome these shortcomings. METHODS: A neural network architecture was constructed and its hyperparameters optimized. Training was conducted on a simulated and in vivo-paired data sets of discrete signal values and their corresponding Lorentzian shape parameters. The sLoFNet performance was compared with LS on several WASSR data sets (both simulated and in vivo 3T brain scans). Prediction errors, robustness against noise, effects of sampling density, and time consumption were compared. RESULTS: LS and sLoFNet performed comparably in terms of RMS error and mean absolute error on all in vivo data with no statistically significant difference. Although the LS method fitted well on samples with low noise, its error increased rapidly when increasing sample noise up to 4.5%, whereas the error of sLoFNet increased only marginally. With the reduction of Z-spectral sampling density, prediction errors increased for both methods, but the increase occurred earlier (at 25 vs. 15 frequency points) and was more pronounced for LS. Furthermore, sLoFNet performed, on average, 70 times faster than the LS-method. CONCLUSION: Comparisons between LS and sLoFNet on simulated and in vivo WASSR MRI Z-spectra in terms of robustness against noise and decreased sample resolution, as well as time consumption, showed significant advantages for sLoFNet.


Assuntos
Aprendizado Profundo , Água , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
3.
Magn Reson Med ; 89(5): 1871-1887, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36579955

RESUMO

PURPOSE: Dynamic glucose-enhanced (DGE) MRI relates to a group of exchange-based MRI techniques where the uptake of glucose analogues is studied dynamically. However, motion artifacts can be mistaken for true DGE effects, while motion correction may alter true signal effects. The aim was to design a numerical human brain phantom to simulate a realistic DGE MRI protocol at 3T that can be used to assess the influence of head movement on the signal before and after retrospective motion correction. METHODS: MPRAGE data from a tumor patient were used to simulate dynamic Z-spectra under the influence of motion. The DGE responses for different tissue types were simulated, creating a ground truth. Rigid head movement patterns were applied as well as physiological dilatation and pulsation of the lateral ventricles and head-motion-induced B0 -changes in presence of first-order shimming. The effect of retrospective motion correction was evaluated. RESULTS: Motion artifacts similar to those previously reported for in vivo DGE data could be reproduced. Head movement of 1 mm translation and 1.5 degrees rotation led to a pseudo-DGE effect on the order of 1% signal change. B0 effects due to head motion altered DGE changes due to a shift in the water saturation spectrum. Pseudo DGE effects were partly reduced or enhanced by rigid motion correction depending on tissue location. CONCLUSION: DGE MRI studies can be corrupted by motion artifacts. Designing post-processing methods using retrospective motion correction including B0 correction will be crucial for clinical implementation. The proposed phantom should be useful for evaluation and optimization of such techniques.


Assuntos
Glucose , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Rotação , Artefatos
4.
NMR Biomed ; 36(6): e4863, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36310022

RESUMO

Dynamic glucose-enhanced (DGE) MRI is used to study the signal intensity time course (tissue response curve) after D-glucose injection. D-glucose has potential as a biodegradable alternative or complement to gadolinium-based contrast agents, with DGE being comparable with dynamic contrast-enhanced (DCE) MRI. However, the tissue uptake kinetics as well as the detection methods of DGE differ from DCE MRI, and it is relevant to compare these techniques in terms of spatiotemporal enhancement patterns. This study aims to develop a DGE analysis method based on tissue response curve shapes, and to investigate whether DGE MRI provides similar or complementary information to DCE MRI. Eleven patients with suspected gliomas were studied. Tissue response curves were measured for DGE and DCE MRI at 7 T and the area under the curve (AUC) was assessed. Seven types of response curve shapes were postulated and subsequently identified by deep learning to create color-coded "curve maps" showing the spatial distribution of different curve types. DGE AUC values were significantly higher in lesions than in normal tissue (p < 0.007). Furthermore, the distribution of curve types differed between lesions and normal tissue for both DGE and DCE. The DGE and DCE response curves in a 6-min postinjection time interval were classified as the same curve type in 20% of the lesion voxels, which increased to 29% when a 12-min DGE time interval was considered. While both DGE and DCE tissue response curve-shape analysis enabled differentiation of lesions from normal brain tissue in humans, their enhancements were neither temporally identical nor confined entirely to the same regions. Curve maps can provide accessible and intuitive information about the shape of DGE response curves, which is expected to be useful in the continued work towards the interpretation of DGE uptake curves in terms of D-glucose delivery, transport, and metabolism.


Assuntos
Neoplasias Encefálicas , Glucose , Humanos , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
5.
J Neuroimaging ; 32(3): 442-458, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128747

RESUMO

BACKGROUND AND PURPOSE: Cerebral tissue oxygenation is a critical brain viability parameter, and the magnetic properties of hemoglobin offer the opportunity to noninvasively quantify oxygen extraction fraction (OEF) by magnetic resonance imaging (MRI). Ultrahigh-field MRI shows advantages such as increased sensitivity to magnetic susceptibility differences and improved signal-to-noise ratio that can be translated into smaller voxel size, but also increased sensitivity to static and B1 field inhomogeneities. The aim was to produce a systematic comparison of three MRI-based methods for estimation of OEF. METHODS: OEF estimates in 16 healthy subjects were obtained at 7T utilizing susceptometry-based oximetry (SBO), quantitative susceptibility mapping (QSM), and transverse relaxation rate (R2*). Two major draining veins, that is, the superior sagittal sinus (SSS) and the straight sinus (SS), were investigated, including mutual agreement between the methods in each of the two different vessels, agreement between vessels as well as potential vessel angle and vessel size dependences. RESULTS: Very good correlation (r = .88) was found between SBO-based and QSM-based OEF estimates in SSS. Only QSM showed a moderate correlation (r = .61) between corresponding OEF estimates in SSS and SS. For SBO, a trend of increasing OEF estimates was observed as the SS vessel angle relative to the main magnetic field increased. No obvious size dependence could be established for any method. The R2*-based OEF estimates were reasonable (35%-36%), but the observed range was somewhat low. CONCLUSION: The results indicate that QSM is a promising candidate for assessment of OEF estimates, for example, providing reasonably robust estimates across a wide range of vessel orientations.


Assuntos
Mapeamento Encefálico , Oxigênio , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Circulação Cerebrovascular , Humanos , Imageamento por Ressonância Magnética/métodos
6.
MAGMA ; 35(5): 791-804, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35025071

RESUMO

OBJECTIVE: Deconvolution is an ill-posed inverse problem that tends to yield non-physiological residue functions R(t) in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). In this study, the use of Bézier curves is proposed for obtaining physiologically reasonable residue functions in perfusion MRI. MATERIALS AND METHODS: Cubic Bézier curves were employed, ensuring R(0) = 1, bounded-input, bounded-output stability and a non-negative monotonically decreasing solution, resulting in 5 parameters to be optimized. Bézier deconvolution (BzD), implemented in a Bayesian framework, was tested by simulation under realistic conditions, including effects of arterial delay and dispersion. BzD was also applied to DSC-MRI data from a healthy volunteer. RESULTS: Bézier deconvolution showed robustness to different underlying residue function shapes. Accurate perfusion estimates were observed, except for boxcar residue functions at low signal-to-noise ratio. BzD involving corrections for delay, dispersion, and delay with dispersion generally returned accurate results, except for some degree of cerebral blood flow (CBF) overestimation at low levels of each effect. Maps of mean transit time and delay were markedly different between BzD and block-circulant singular value decomposition (oSVD) deconvolution. DISCUSSION: A novel DSC-MRI deconvolution method based on Bézier curves was implemented and evaluated. BzD produced physiologically plausible impulse response, without spurious oscillations, with generally less CBF underestimation than oSVD.


Assuntos
Algoritmos , Encéfalo , Teorema de Bayes , Encéfalo/patologia , Circulação Cerebrovascular/fisiologia , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão
7.
Heliyon ; 8(12): e12364, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590544

RESUMO

Background: Estimation of the oxygen extraction fraction (OEF) by quantitative susceptibility mapping (QSM) magnetic resonance imaging (MRI) is promising but requires systematic evaluation. Extraction of OEF-related information from the tissue residue function in dynamic susceptibility contrast MRI (DSC-MRI) has also been proposed. In this study, whole-brain OEF repeatability was investigated, as well as the relationships between QSM-based OEF and DSC-MRI-based parameters, i.e., mean transit time (MTT) and an oxygen extraction index, referred to as apparent OEF (AOEF). Method: Test-retest data were obtained from 20 healthy volunteers at 3 T. QSM maps were reconstructed from 3D gradient-echo MRI phase data, using morphology-enabled dipole inversion. DSC-MRI was accomplished using gradient-echo MRI at a temporal resolution of 1.24 s. Results: The whole-brain QSM-based OEF was (40.4±4.8) % and, in combination with a previously published cerebral blood flow (CBF) estimate, this corresponds to a cerebral metabolic rate of oxygen level of CMRO2 = 3.36 ml O2/min/100 g. The intra-class correlation coefficient [ICC(2,1)] for OEF test-retest data was 0.73. The MTT-versus-OEF and AOEF-versus-OEF relationships showed correlation coefficients of 0.61 (p = 0.004) and 0.52 (p = 0.019), respectively. Discussion: QSM-based OEF showed a convincing absolute level and good test-retest results in terms of the ICC. Moderate to good correlations between QSM-based OEF and DSC-MRI-based parameters were observed. The present results constitute an indicator of the level of robustness that can be achieved without applying extraordinary resources in terms of MRI equipment, imaging protocol, QSM reconstruction, and OEF analysis.

8.
NMR Biomed ; 35(2): e4624, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34585813

RESUMO

Dynamic glucose-enhanced (DGE) magnetic resonance imaging (MRI) has shown potential for tumor imaging using D-glucose as a biodegradable contrast agent. The DGE signal change is small at 3 T (around 1%) and accurate detection is hampered by motion. The intravenous D-glucose injection is associated with transient side effects that can indirectly generate subject movements. In this study, the aim was to study DGE arterial input functions (AIFs) in healthy volunteers at 3 T for different scanning protocols, as a step towards making the glucose chemical exchange saturation transfer (glucoCEST) protocol more robust. Two different infusion durations (1.5 and 4.0 min) and saturation frequency offsets (1.2 and 2.0 ppm) were used. The effect of subject motion on the DGE signal was studied by using motion estimates retrieved from standard retrospective motion correction to create pseudo-DGE maps, where the apparent DGE signal changes were entirely caused by motion. Furthermore, the DGE AIFs were compared with venous blood glucose levels. A significant difference (p = 0.03) between arterial baseline and postinfusion DGE signal was found after D-glucose infusion. The results indicate that the measured DGE AIF signal change depends on both motion and blood glucose concentration change, emphasizing the need for sufficient motion correction in glucoCEST imaging. Finally, we conclude that a longer infusion duration (e.g. 3-4 min) should preferably be used in glucoCEST experiments, because it can minimize the glucose infusion side effects without negatively affecting the DGE signal change.


Assuntos
Glucose/química , Imageamento por Ressonância Magnética/métodos , Adulto , Glicemia/análise , Humanos , Aumento da Imagem , Masculino , Fatores de Tempo
9.
Eur Radiol Exp ; 5(1): 53, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34935093

RESUMO

BACKGROUND: Our aim was to introduce damaged red blood cells (RBCs) as a tool for haemodynamic provocation in rats, hypothesised to cause decreased cerebral blood flow (CBF) and prolonged water capillary transfer time (CTT), and to investigate whether expected changes in CBF could be observed and if haemodynamic alterations were reflected by the CTT metric. METHODS: Damaged RBCs exhibiting a mildly reduced deformability were injected to cause aggregation of RBCs. Arterial spin labelling (ASL) magnetic resonance imaging experiments were performed at 9.4 T. Six datasets (baseline plus five datasets after injection) were acquired for each animal in a study group and a control group (13 and 10 female adult Wistar rats, respectively). For each dataset, ASL images at ten different inversion times were acquired. The CTT model was adapted to the use of a measured arterial input function, implying the use of a realistic labelling profile. Repeated measures ANOVA was used (alpha error = 0.05). RESULTS: After injection, significant differences between the study group and control group were observed for relative CBF in white matter (up to 20 percentage points) and putamen (up to 18-20 percentage points) and for relative CTT in putamen (up to 35-40 percentage points). CONCLUSIONS: Haemodynamic changes caused by injection of damaged RBCs were observed by ASL-based CBF and CTT measurements. Damaged RBCs can be used as a tool for test and validation of perfusion imaging modalities. CTT model fitting was challenging to stabilise at experimental signal-to-noise ratio levels, and the number of free parameters was minimised.


Assuntos
Circulação Cerebrovascular , Água , Animais , Eritrócitos , Feminino , Ratos , Ratos Wistar , Marcadores de Spin
10.
Tomography ; 7(3): 434-451, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34564300

RESUMO

At field strengths of 7 T and above, T1-weighted imaging of human brain suffers increasingly from radiofrequency (RF) B1 inhomogeneities. The well-known MP2RAGE (magnetization prepared two rapid acquisition gradient echoes) sequence provides a solution but may not be readily available for all MR systems. Here, we describe the implementation and evaluation of a sequential protocol to obtain normalized magnetization prepared rapid gradient echo (MPRAGE) images at 0.7, 0.8, or 0.9-mm isotropic spatial resolution. Optimization focused on the reference gradient-recalled echo (GRE) that was used for normalization of the MPRAGE. A good compromise between white-gray matter contrast and the signal-to-noise ratio (SNR) was reached at a flip angle of 3° and total scan time was reduced by increasing the reference voxel size by a factor of 8 relative to the MPRAGE resolution. The average intra-subject coefficient-of-variation (CV) in segmented white matter (WM) was 7.9 ± 3.3% after normalization, compared to 20 ± 8.4% before. The corresponding inter-subject average CV in WM was 7.6 ± 7.6% and 13 ± 7.8%. Maps of T1 derived from forward signal modelling showed no obvious bias after correction by a separately acquired flip angle map. To conclude, a non-interleaved acquisition for normalization of MPRAGE offers a simple alternative to MP2RAGE to obtain semi-quantitative purely T1-weighted images. These images can be converted to T1 maps, analogously to the established MP2RAGE approach. Scan time can be reduced by increasing the reference voxel size which has only a miniscule effect on image quality.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Humanos , Razão Sinal-Ruído , Substância Branca/diagnóstico por imagem
11.
Magn Reson Med ; 86(5): 2562-2576, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34196043

RESUMO

PURPOSE: To optimize a whole-brain magnetization transfer saturation (MTsat ) protocol at 7T, focusing on maximizing obtainable MTsat under the constraints of specific absorption rate (SAR) and transmit field inhomogeneity, while avoiding bias and keeping scan time short. THEORY AND METHODS: MTsat is a semi-quantitative metric, obtained by spoiled gradient-echo MRI in the imaging steady-state. Optimization was based on an established 7T dual flip angle protocol, and focused on MT pulse, readout flip angle, repetition time (TR), offset frequency (Δ), and correction of residual effects from transmit field inhomogeneities by separate flip angle mapping. RESULTS: A 100% SAR level was reached at a 180° MT pulse flip angle, using a compact sinc main lobe (4 ms duration) and minimum TR = 26.5 ms. The use of Δ = +2.0 kHz caused no discernible direct saturation, while Δ = -2.0 kHz resulted in 45% higher MTsat in white matter (WM) compared to Δ = +2.0 kHz. A 4° readout flip angle eliminated bias while yielding a good signal-to-noise ratio. Increased TR yielded only a little increase in MTsat , and TR = 26.5 ms (scan time 04:58 min) was thus selected. Post hoc transmit field correction clearly improved homogeneity, especially in WM. CONCLUSIONS: The range of MTsat is limited at 7T, and this can partly be overcome by the exploitation of the asymmetry of the macromolecular lineshape through the sign of Δ. To reduce scan time, a compact MT pulse with a sufficiently narrow frequency response should be used. TR and readout flip angle should be kept short/small. Transmit field correction through separate flip angle mapping is required.


Assuntos
Encéfalo , Substância Branca , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Razão Sinal-Ruído
12.
MAGMA ; 33(5): 663-676, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32078074

RESUMO

OBJECTIVE: In dynamic susceptibility contrast MRI (DSC-MRI), an arterial input function (AIF) is required to quantify perfusion. However, estimation of the concentration of contrast agent (CA) from magnitude MRI signal data is challenging. A reasonable alternative would be to quantify CA concentration using quantitative susceptibility mapping (QSM), as the CA alters the magnetic susceptibility in proportion to its concentration. MATERIAL AND METHODS: AIFs with reasonable appearance, selected on the basis of conventional criteria related to timing, shape, and peak concentration, were registered from both ΔR2* and QSM images and mutually compared by visual inspection. Both ΔR2*- and QSM-based AIFs were used for perfusion calculations based on tissue concentration data from ΔR2*as well as QSM images. RESULTS: AIFs based on ΔR2* and QSM data showed very similar shapes and the estimated cerebral blood flow values and mean transit times were similar. Analysis of corresponding ΔR2* versus QSM-based concentration estimates yielded a transverse relaxivity estimate of 89 s-1 mM-1, for voxels identified as useful AIF candidate in ΔR2* images according to the conventional criteria. DISCUSSION: Interestingly, arterial concentration time curves based on ΔR2* versus QSM data, for a standard DSC-MRI experiment, were generally very similar in shape, and the relaxivity obtained in voxels representing blood was similar to tissue relaxivity obtained in previous studies.


Assuntos
Circulação Cerebrovascular , Meios de Contraste , Imageamento por Ressonância Magnética , Perfusão , Reprodutibilidade dos Testes
13.
Magn Reson Med ; 84(3): 1347-1358, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32060952

RESUMO

PURPOSE: To address the systematic bias in whole-brain dual flip angle (DFA) T1 -mapping at 7T by optimizing the flip angle pair and carefully selecting radiofrequency (RF) pulse shape and duration. THEORY AND METHODS: Spoiled gradient echoes can be used to estimate whole-brain maps of T1 . This can be accomplished by using only two acquisitions with different flip angles, that is, a DFA-based approach. Although DFA-based T1 -mapping is seemingly straightforward to implement, it is sensitive to bias caused by incomplete spoiling and incidental magnetization transfer effects. Further bias is introduced by the increased B0 and B1+ inhomogeneities at 7T. Experiments were performed to determine the optimal flip angle pair and appropriate RF pulse shape and duration. Obtained T1 estimates were validated using inversion recovery prepared echo planar imaging and compared to literature values. A multi-echo readout was used to increase signal-to-noise ratio, enabling quantification of R2∗ and susceptibility, χ. RESULTS: Incomplete spoiling was observed above a local flip angle of approximately 20°. An asymmetric gauss-filtered sinc pulse with a constant duration of 700 µs showed a sufficiently flat frequency response profile to avoid incomplete excitation in areas with high B0 offsets. A pulse duration of 700 µs minimized effects from incidental magnetization transfer. CONCLUSION: When performing DFA-based T1 -mapping one should (a) limit the higher flip angle to avoid incomplete spoiling, (b) use a RF pulse shape insensitive to B0 inhomogeneities and (c) apply a constant RF pulse duration, balanced to minimize incidental magnetization transfer.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Viés , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imagens de Fantasmas
14.
Eur J Radiol Open ; 6: 198-205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31193664

RESUMO

Compartmental diffusion MRI models that account for intravoxel incoherent motion (IVIM) of blood perfusion allow for estimation of the fractional volume of the microvascular compartment. Conventional IVIM models are known to be biased by not accounting for partial volume effects caused by free water and cerebrospinal fluid (CSF), or for tissue-dependent relaxation effects. In this work, a three-compartment model (tissue, free water and blood) that includes relaxation terms is introduced. To estimate the model parameters, in vivo human data were collected with multiple echo times (TE), inversion times (TI) and b-values, which allowed a direct relaxation estimate alongside estimation of perfusion, diffusion and fractional volume parameters. Compared to conventional two-compartment models (with and without relaxation compensation), the three-compartment model showed less effects of CSF contamination. The proposed model yielded significantly different volume fractions of blood and tissue compared to the non-relaxation-compensated model, as well as to the conventional two-compartment model, suggesting that previously reported parameter ranges, using models that do not account for relaxation, should be reconsidered.

15.
Tomography ; 4(4): 164-171, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30588502

RESUMO

Dynamic glucose-enhanced (DGE) imaging uses chemical exchange saturation transfer magnetic resonance imaging to retrieve information about the microcirculation using infusion of a natural sugar (D-glucose). However, this new approach is not yet well understood with respect to the dynamic tissue response. DGE time curves for arteries, normal brain tissue, and cerebrospinal fluid (CSF) were analyzed in healthy volunteers and compared with the time dependence of sampled venous plasma blood glucose levels. The arterial response curves (arterial input function [AIF]) compared reasonably well in shape with the time curves of the sampled glucose levels but could also differ substantially. The brain tissue response curves showed mainly negative responses with a peak intensity that was of the order of 10 times smaller than the AIF peak and a shape that was susceptible to both noise and partial volume effects with CSF, attributed to the low contrast-to-noise ratio. The CSF response curves showed a rather large and steady increase of the glucose uptake during the scan, due to the rapid uptake of D-glucose in CSF. Importantly, and contrary to gadolinium studies, the curves differed substantially among volunteers, which was interpreted to be caused by variations in insulin response. In conclusion, while AIFs and tissue response curves can be measured in DGE experiments, partial volume effects, low concentration of D-glucose in tissue, and osmolality effects between tissue and blood may prohibit quantification of normal tissue perfusion parameters. However, separation of tumor responses from normal tissue responses would most likely be feasible.

16.
Radiol Res Pract ; 2018: 6709525, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155300

RESUMO

The local magnetic field inside and around an object in a magnetic resonance imaging unit depends on the magnetic susceptibility of the object being magnetized, in combination with its geometry/orientation. Magnetic susceptibility can thus be exploited as a source of tissue contrast, and susceptibility imaging may also become a useful tool in contrast agent quantification and for assessment of venous oxygen saturation levels. In this study, the accuracy of an established procedure for quantitative susceptibility mapping (QSM) was investigated. Three gel phantoms were constructed with cylinders of varying susceptibility and geometry. Experimental results were compared with simulated and analytically calculated data. An expected linear relationship between estimated susceptibility and concentration of contrast agent was observed. Less accurate QSM-based susceptibility values were observed for cylindrical objects at angles, relative to the main magnetic field, that were close to or larger than the magic angle. Results generally improved for large objects/high spatial resolution and large volume coverage. For simulated phase maps, accurate susceptibility quantification by QSM was achieved also for more challenging geometries. The investigated QSM algorithm was generally robust to changes in measurement and calculation parameters, but experimental phase data of sufficient quality may be difficult to obtain in certain geometries.

17.
Magn Reson Med ; 80(5): 2223-2231, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29577377

RESUMO

PURPOSE: To propose and assess an improved method for calculating the equilibrium magnetization of arterial blood ( M0a), used for calibration of perfusion estimates in arterial spin labeling. METHODS: Whereas standard M0a calculation is based on dividing a proton density-weighted image by an average brain-blood partition coefficient, the proposed method exploits partial-volume data to adjust this ratio. The nominator is redefined as the magnetization of perfused tissue, and the denominator is redefined as a weighted sum of tissue-specific partition coefficients. Perfusion data were acquired with a pseudo-continuous arterial spin labeling sequence, and partial-volume data were acquired using a rapid saturation recovery sequence with the same readout module. Results from 7 healthy volunteers were analyzed and compared with the conventional method. RESULTS: The proposed method produced improved M0a homogeneity throughout the brain in all subjects. The mean gray matter perfusion was significantly higher with the proposed method compared with the conventional method: 61.2 versus 56.3 mL/100 g/minute (+8.7%). Although to a lesser degree, the corresponding white matter values were also significantly different: 20.8 versus 22.0 mL/100 g/minute (-5.4%). The spatial and quantitative differences between the 2 methods were similar in all subjects. CONCLUSION: Compared with the conventional approach, the proposed method produced more homogenous M0a maps, corresponding to a more accurate calibration. The proposed method also yielded significantly different perfusion values across the whole brain, and performed consistently in all subjects. The new M0a method improves quantitative perfusion estimation with arterial spin labeling, and can therefore be of considerable value in perfusion imaging applications.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Masculino , Imagem de Perfusão , Marcadores de Spin
18.
Tomography ; 3(2): 74-78, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28825038

RESUMO

Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) following bolus injection of gadolinium contrast agent (CA) is widely used for the estimation of brain perfusion parameters such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) for both clinical and research purposes. Although it is predicted that DSC-MRI will have superior performance at high magnetic field strengths, to the best of our knowledge, there are no reports of 7 T DSC-MRI in the literature. It is plausible that the transfer of DSC-MRI to 7 T may be accompanied by increased [Formula: see text] relaxivity in tissue and a larger difference in [Formula: see text]-versus-concentration relationships between tissue and large vessels. If not accounted for, this will subsequently result in apparent CBV and CBF estimates that are higher than those reported previously at lower field strengths. The aims of this study were therefore to assess the feasibility of 7 T DSC-MRI and to investigate the apparent field-strength dependence of CBV and CBF estimates. In total, 8 healthy volunteers were examined using DSC-MRI at 7 T. A reduced CA dose of 0.05 mmol/kg was administered to decrease susceptibility artifacts. CBV, CBF, and MTT maps were calculated using standard DSC-MRI tracer-kinetic theory. Subject-specific arterial partial volume correction factors were obtained using a tail-scaling approach. Compared with literature values obtained using the tail-scaling approach at 1.5 T and 3 T, the CBV and CBF values of the present study were found to be further overestimated. This observation is potentially related to an inferred field-strength dependence of transverse relaxivities, although issues related to the CA dose must also be considered.

19.
MAGMA ; 30(6): 555-566, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28631203

RESUMO

OBJECTIVE: One major issue in dynamic susceptibility contrast MRI (DSC-MRI) is to accurately determine contrast agent (CA) concentration, since T2* relaxivity in vivo is generally unknown and varies between blood and tissue. In this study, quantitative susceptibility mapping (QSM) was used for quantification of CA concentration. MATERIALS AND METHODS: A DSC-MRI protocol, including phase data acquisition, was applied to 20 healthy volunteers in a test-retest study. By selecting a CSF reference region of interest (ROI), the values of all QSM images were shifted to show no CA-induced change in CSF. CA concentration and cerebral blood volume (CBV) were estimated using shifted QSM data. CSF reference ROI optimization was evaluated by investigation of CBV repeatability. The CBV age dependence was analysed and tissue T2* relaxivity was estimated. RESULTS: The best repeatability of CBV, using an optimal CSF reference ROI, showed test-versus-retest correlations of r = 0.81 and r = 0.91 for white and grey matter, respectively. A slight CBV decrease with age was observed, and the estimated in vivo T2* relaxivity was 85 mM-1s-1. CONCLUSION: Provided that a carefully selected CSF reference ROI is used to shift QSM image values, susceptibility information can be used to estimate concentration of contrast agent and to calculate CBV.


Assuntos
Volume Sanguíneo Cerebral , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Pessoa de Meia-Idade , Software
20.
Neuroimage ; 156: 423-434, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28412443

RESUMO

The assessment of the free water fraction in the brain provides important information about extracellular processes such as atrophy and neuroinflammation in various clinical conditions as well as in normal development and aging. Free water estimates from diffusion MRI are assumed to account for freely diffusing water molecules in the extracellular space, but may be biased by other pools of molecules in rapid random motion, such as the intravoxel incoherent motion (IVIM) of blood, where water molecules perfuse in the randomly oriented capillary network. The goal of this work was to separate the signal contribution of the perfusing blood from that of free-water and of other brain diffusivities. The influence of the vascular compartment on the estimation of the free water fraction and other diffusivities was investigated by simulating perfusion in diffusion MRI data. The perfusion effect in the simulations was significant, especially for the estimation of the free water fraction, and was maintained as long as low b-value data were included in the analysis. Two approaches to reduce the perfusion effect were explored in this study: (i) increasing the minimal b-value used in the fitting, and (ii) using a three-compartment model that explicitly accounts for water molecules in the capillary blood. Estimation of the model parameters while excluding low b-values reduced the perfusion effect but was highly sensitive to noise. The three-compartment model fit was more stable and additionally, provided an estimation of the volume fraction of the capillary blood compartment. The three-compartment model thus disentangles the effects of free water diffusion and perfusion, which is of major clinical importance since changes in these components in the brain may indicate different pathologies, i.e., those originating from the extracellular space, such as neuroinflammation and atrophy, and those related to the vascular space, such as vasodilation, vasoconstriction and capillary density. Diffusion MRI data acquired from a healthy volunteer, using multiple b-shells, demonstrated an expected non-zero contribution from the blood fraction, and indicated that not accounting for the perfusion effect may explain the overestimation of the free water fraction evinced in previous studies. Finally, the applicability of the method was demonstrated with a dataset acquired using a clinically feasible protocol with shorter acquisition time and fewer b-shells.


Assuntos
Química Encefálica , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Modelos Neurológicos , Adulto , Algoritmos , Sangue/diagnóstico por imagem , Humanos , Masculino , Neuroimagem/métodos , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...