Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 468, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117786

RESUMO

An antagonistic hemolymph-muscular system is essential for soft-bodied invertebrates. Many ecdysozoans (molting animals) possess neither a heart nor a vascular or circulatory system, whereas most arthropods exhibit a well-developed circulatory system. How did this system evolve and how was it subsequently modified in panarthropod lineages? As the closest relatives of arthropods and tardigrades, onychophorans (velvet worms) represent a key group for addressing this question. We therefore analyzed the entire circulatory system of the peripatopsid Euperipatoides rowelli and discovered a surprisingly elaborate organization. Our findings suggest that the last common ancestor of Onychophora and Arthropoda most likely possessed an open vascular system, a posteriorly closed heart with segmental ostia, a pericardial sinus filled with nephrocytes and an impermeable pericardial septum, whereas the evolutionary origin of plical and pericardial channels is unclear. Our study further revealed an intermittent heartbeat-regular breaks of rhythmic, peristaltic contractions of the heart-in velvet worms, which might stimulate similar investigations in arthropods.


Assuntos
Artrópodes , Ascomicetos , Sistema Cardiovascular , Animais , Filogenia , Frequência Cardíaca , Invertebrados
2.
Arthropod Struct Dev ; 69: 101165, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35749965

RESUMO

Pseudoscorpions are an ancient and globally distributed lineage of arachnids with more than 4000 species. Despite being present in virtually all terrestrial habitats, their morphology and anatomy has rarely been studied to date, which hampers homology statements both within and between other arachnid orders. All pseudoscorpions share a morphological peculiarity, the fixation of the coxae of all the walking legs. The same morphological condition is seen in certain other arachnid taxa, such as Solifugae or Scorpiones - potential sistergroups of Pseudoscorpiones. To investigate the musculature apparatus of this unusual feature, we reconstructed the musculature in the coxae of walking legs in three species of pseudoscorpions that represent the three major clades within this order. Using micro-computed tomography (µCT), we show that pseudoscorpions have the highest number of coxal muscles amongst the arachnid orders (12 vs. fewer than 10 in others), and that the muscular composition of the first two legs differs from that in the hind legs, correlating with the difference in function, i.e. pulling in the front legs and pushing in the hind legs. Pseudoscorpions are also unique amongst the arachnids in lacking endoskeletal structures (coxal apodeme or costa coxalis) inside the coxae. We observed that within pseudoscorpions, there is a trend towards a reduction of the number of coxal muscles, with the most basal-branching taxon having the highest number and more derived taxa exhibiting lower counts. We hypothesize the muscular ground pattern for Pseudoscorpiones and discuss the evolution of this system by comparing it to the (scanty) data on other arachnids available in the literature.


Assuntos
Aracnídeos , Animais , Escorpiões , Microtomografia por Raio-X
3.
J R Soc Interface ; 18(182): 20210388, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34465210

RESUMO

Although being one of the most well-known animal groups, functional and constructional aspects of scorpions and especially of their tail (metasoma) have so far been overlooked. This tail represents a special construction, as it consists of five tube-shaped segments made up of strong cuticle, which are movable against each other and thus manoeuvre the notorious stinger both quickly and very precisely in space. This high mobility of an exoskeletal structure can be attributed to the connection between the segments described here for the first time. This joint allows for the twisting and bending at the same time in a single, simple construction: adjoining metasomal segments each possess an almost circular opening posteriorly, where the next segment is lodged. Anteriorly, these segments possess two saddle-like protrusions laterally, which are able to rotate in two directions on the rim of the posterior circular opening of the previous segment allowing for twisting and bending. The metasomal joint is particularly noteworthy since its mechanism can be compared to that of arthropod appendages. The scorpion metasoma is actually the only known case in Chelicerata, in which an entire body section has been modified to perform tasks similar to that of an appendage while containing digestive organs. The joint mechanism can also inspire technical applications, for instance in robotics.


Assuntos
Extremidades , Escorpiões , Animais
4.
Arthropod Struct Dev ; 60: 101003, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33444929

RESUMO

Scorpions are among the most popular research objects within Arachnida and there is an impressive body of knowledge about their biology, distribution, morphology, etc. Although the poison sting has gained a lot of attention due to its potential lethal effects to humans, hitherto, there has been no comparative morphological study on the metasoma, the body part that delivers the poisonous injection. The metasoma always consists of five body segments terminated by a poison sting, but it presents significant morphological variations, both between sexes and between species. Its form ranges from long and thin to short and rather reduced to thick and dominant. In this study, we investigated species representing major scorpion clades and most of the known morphological disparity. Using high-resolution micro-computer-tomography and 3D-reconstruction, we present the first 3D visualizations of metasomal exo-skeletal elements in combination with their musculature. Despite of morphological varying metasomal forms, in all investigated species, a repeating pattern of muscles was found: four pairs of muscles in metasomal segment one to four and two pairs of muscles in metasomal segment five. However, the metasomal muscles are characterized by an antero-posterior change in their shapes and sizes and interspecific variation was also found in the extrinsic metasomal musculature, i.e. the muscles that link metasoma to mesosoma.


Assuntos
Escorpiões/anatomia & histologia , Animais , Feminino , Masculino , Músculos/anatomia & histologia
5.
Sci Rep ; 10(1): 20441, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208881

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
J Morphol ; 281(12): 1524-1533, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103810

RESUMO

The locomotory system of Solifugae is distinct from that of other Arachnida in several ways. Only three pairs of legs are involved in locomotion, while the first pair function as sensory appendages. Morphologically, the proximal region of the locomotory system in Solifugae is characterized by fused coxae. Within the prosoma of Solifugae, an endosternite is missing: in other Arachnida, this endosternite serves as the proximal attachment site for a portion of the extrinsic musculature. How then do these skeletal modifications influence the muscular anatomy in the proximal region of the locomotory system? To answer this question, we studied the skeletomuscular anatomy of Galeodes granti at the interface between the prosoma and legs, reinvestigating the complex muscular anatomy of this body region for the first time in over 80 years and-for the first time-using detailed micro-computed tomography scans to analyze the skeletomuscular morphology. Specimens of three further species were checked for comparison. The analysis revealed differences in the number and composition of coxa-trochanter muscles in each of the four pairs of legs. These are compared in the light of serial homology. The comparison between the proximal locomotory system of Solifugae and that of other Arachnida unveils a series of analogies. Primarily, the coxa-trochanter joint is the most proximal joint to move the leg relative to the prosoma. Therefore, we argue that from a morpho-functional point of view, the coxa-trochanter muscles in Solifugae should be considered secondary extrinsic musculature. Thus, the legs gain a stable, articulated joint in the most proximal region of the leg to the prosoma, which might be advantageous for agile locomotion.


Assuntos
Aracnídeos/anatomia & histologia , Aracnídeos/fisiologia , Evolução Biológica , Músculos/anatomia & histologia , Músculos/fisiologia , Animais , Extremidades/anatomia & histologia , Locomoção/fisiologia , Músculos/diagnóstico por imagem , Microtomografia por Raio-X
7.
J Morphol ; 281(4-5): 500-512, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32246532

RESUMO

The morphology of hemolymph circulatory systems has been studied in many arthropod groups over the past decades. In most cases, however, the focus of these studies has been the vascular system, while its counterpart, the lacunar system, has often been neglected. To further understanding of the interrelationships between these two complementary subsystems, we investigated both, the hemolymph vascular system and the hemolymph lacunar system, of the decapod Penaeus vannamei using 3D-imaging techniques (micro-computed tomography and confocal laser scanning microscopy) in combination with 3D reconstruction. Major parts of the vascular and lacunar system are described. Our insights into their morphology are used to derive functional conclusions for a model illustrating the interrelationships between the two subsystems. The morphology of and the functional interaction between the vascular and lacunar systems are discussed in the context of the debate on "open vs. closed circulatory systems."


Assuntos
Sistema Cardiovascular/anatomia & histologia , Penaeidae/anatomia & histologia , Animais , Brânquias/anatomia & histologia , Coração/anatomia & histologia , Hemolinfa/fisiologia , Imageamento Tridimensional
8.
Sci Rep ; 10(1): 14, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949185

RESUMO

Scorpions are among the first animals to have become fully terrestrialised. Their early fossil record is limited, and fundamental questions, including how and when they adapted to life on land, have been difficult to answer. Here we describe a new exceptionally preserved fossil scorpion from the Waukesha Biota (early Silurian, ca. 437.5-436.5 Ma) of Wisconsin, USA. This is the earliest scorpion yet reported, and it shows a combination of primitive marine chelicerate and derived arachnid characteristics. Elements of the circulatory, respiratory, and digestive systems are preserved, and they are essentially indistinguishable from those of present-day scorpions but share similarities with marine relatives. At this early point in arachnid evolution, physiological changes concomitant with the marine-to-terrestrial transition must have occurred but, remarkably, structural change in the circulatory or respiratory systems appear negligible. Whereas there is no unambiguous evidence that this early scorpion was terrestrial, this evidence suggests that ancestral scorpions were likely capable of forays onto land, a behavior similar to that of extant horseshoe crabs.


Assuntos
Fósseis/anatomia & histologia , Escorpiões/anatomia & histologia , Animais , Organismos Aquáticos , Evolução Biológica , Ecossistema , Masculino
9.
J Exp Biol ; 222(Pt 3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530839

RESUMO

Prehensile and gripping organs are recurring structures in different organisms that enhance friction by the reinforcement and redirection of normal forces. The relationship between organ structure and biomechanical performance is poorly understood, despite a broad relevance for microhabitat choice, movement ecology and biomimetics. Here, we present the first study of the biomechanics of prehensile feet in long-legged harvestmen. These arachnids exhibit the strongest sub-division of legs among arthropods, permitting extreme hyperflexion (i.e. curling up the foot tip). We found that despite the lack of adhesive foot pads, these moderately sized arthropods are able to scale vertical smooth surfaces, if the surface is curved. Comparison of three species of harvestmen differing in leg morphology shows that traction reinforcement by foot wrapping depends on the degree of leg sub-division, not leg length. Differences are explained by adaptation to different microhabitats on trees. The exponential increase of foot section length from distal to proximal introduces a gradient of flexibility that permits adaptation to a wide range of surface curvature while maintaining integrity at strong flexion. A pulley system of the claw depressor tendon ensures the controlled flexion of the high number of adesmatic joints in the harvestman foot. These results contribute to the general understanding of foot function in arthropods and showcase an interesting model for the biomimetic engineering of novel transportation systems and surgical probes.


Assuntos
Aracnídeos/fisiologia , Animais , Fenômenos Biomecânicos , Extremidades/fisiologia , Fricção
10.
PLoS One ; 13(9): e0201702, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235213

RESUMO

Arthropods are the most species-rich taxon within Metazoa and have gone through major evolutionary changes with regard to body organization. Arthropod hearts and their associated vascular systems are thus morphologically highly disparate: while some arthropods exhibit very powerful hearts and complex vascular systems, other arthropods do not possess any kind of vascular system or heart at all. A comprehensive study investigating the structure of arthropods hearts has never been undertaken. In this study, we therefore investigate the hearts of 34 species from all major arthropod groups using various imaging techniques (confocal laser scanning microscopy, micro-computed tomography, histology) and describe them by addressing different aspects of heart morphology, e.g. the structure of the myocard or the composition of ostia. In a next step, we conceptualize 18 characters related to heart morphology and their respective character states and-using additional data from the literature-score a matrix for a total of 45 species from 38 supraspecific taxa. We map the characters onto prevailing phylogenetic hypotheses and perform parsimony-based ancestral state reconstruction to trace the evolutionary transformations undergone by arthropod hearts. An exploration of the character concepts (as explanatory hypotheses) reveals ontological peculiarities of character statements that clearly distinguish them in terms of ontological status from descriptive statements (i.e. descriptions of morphemes). The implications of these findings influence the interpretation of ground patterns as explanations. This first phylogenetic approach to heart morphology in the arthropod ground pattern reveals numerous new putative synapomorphies and leads to a reconsideration of the morphology of circulatory systems in early arthropods. Hypotheses on the evolution of hearts in (Pan-) Arthropoda are illustrated and discussed.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Evolução Biológica , Coração/anatomia & histologia , Coração/fisiologia , Filogenia , Animais
11.
Arthropod Struct Dev ; 47(3): 248-267, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29421155

RESUMO

We present a study of the hemolymph vascular system of the marbled crayfish, Procambarus fallax f. virginalis, the only crayfish species known to be parthenogenetic. To identify potential evolutionary patterns, we compared data from a total of 48 specimens of P. fallax with 22 specimens of Orconectes limosus. Visualizations (2D and 3D) were carried out using a combination of classical and modern morphological techniques. Our data were compared to the existing literature. Like all Decapoda, both P. fallax and O. limosus have a hemolymph vascular system, consisting of a globular heart with seven off-branching arteries. We were able to visualize in detail the heart of crayfish for the first time, i.e., the myocard with its clusters of muscles running through the lumen of the heart, the valves and flaps of ostia and arteries. Furthermore, the branching patterns of the seven artery systems were analyzed. Anatomical structures identified to be consistent in all specimens of both species were combined as ground pattern of hemolymph vascular system features for Astacida.


Assuntos
Decápodes/anatomia & histologia , Hemolinfa/fisiologia , Animais , Sistema Cardiovascular/anatomia & histologia , Sistema Cardiovascular/ultraestrutura , Decápodes/ultraestrutura , Microscopia Eletrônica de Varredura , Fluxo Sanguíneo Regional , Especificidade da Espécie , Microtomografia por Raio-X
12.
Curr Biol ; 28(1): 106-113.e4, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29290559

RESUMO

How do stunning functional innovations evolve from unspecialized progenitors? This puzzle is particularly acute for ultrafast movements of appendages in arthropods as diverse as shrimps [1], stomatopods [2], insects [3-6], and spiders [7]. For example, the spectacular snapping claws of alpheid shrimps close so fast (∼0.5 ms) that jetted water creates a cavitation bubble and an immensely powerful snap upon bubble collapse [1]. Such extreme movements depend on (1) an energy-storage mechanism (e.g., some kind of spring) and (2) a latching mechanism to release stored energy quickly [8]. Clearly, rapid claw closure must have evolved before the ability to snap, but its evolutionary origins are unknown. Unearthing the functional mechanics of transitional stages is therefore essential to understand how such radical novel abilities arise [9-11]. We reconstructed the evolutionary history of shrimp claw form and function by sampling 114 species from 19 families, including two unrelated families within which snapping evolved independently (Alpheidae and Palaemonidae) [12, 13]. Our comparative analyses, using micro-computed tomography (microCT) and confocal imaging, high-speed video, and kinematic experiments with select 3D-printed scale models, revealed a previously unrecognized "slip joint" in non-snapping shrimp claws. This slip joint facilitated the parallel evolution of a novel energy-storage and cocking mechanism-a torque-reversal joint-an apparent precondition for snapping. Remarkably, these key functional transitions between ancestral (simple pinching) and derived (snapping) claws were achieved by minute differences in joint structure. Therefore, subtle changes in form appear to have facilitated wholly novel functional change in a saltational manner. VIDEO ABSTRACT.


Assuntos
Evolução Biológica , Decápodes/anatomia & histologia , Casco e Garras/anatomia & histologia , Animais , Fenômenos Biomecânicos , Movimento , Palaemonidae/anatomia & histologia , Filogenia , Microtomografia por Raio-X
13.
Syst Biol ; 66(5): 754-768, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123116

RESUMO

Morphology, the oldest discipline in the biosciences, is currently experiencing a renaissance in the field of comparative phenomics. However, morphological/phenotypic research still suffers on various levels from a lack of standards. This shortcoming, first highlighted as the "linguistic problem of morphology", concerns the usage of terminology and also the need for formalization of morphological descriptions themselves, something of paramount importance not only to the field of morphology but also when it comes to the use of phenotypic data in systematics and evolutionary biology. We therefore argue, that for morphological descriptions, the basis of all systematic and evolutionary interpretations, ontologies need to be utilized which are based exclusively on structural qualities/properties and which in no case include statements about homology and/or function. Statements about homology and function constitute interpretations on a different or higher level. Based on these "anatomy ontologies", further ontological dimensions (e.g., referring to functional properties or homology) may be exerted for a broad use in evolutionary phenomics. To this end we present the first organ-based ontology for the most species-rich animal group, the Arthropoda. Our Ontology of Arthropod Circulatory Systems (OArCS) contains a comprehensive collection of 383 terms (i.e., labels) tied to 296 concepts (i.e., definitions) collected from the literature on phenotypic aspects of circulatory organ features in arthropods. All of the concepts used in OArCS are based exclusively on structural features, and in the context of the ontology are independent of homology and functional assumptions. We cannot rule out that in some cases, terms are used which in traditional usage and previous accounts might have implied homology and/or function (e.g. heart, sternal artery). Concepts are composed of descriptive elements that are used to classify observed instances into the organizational framework of the ontology. That is, descriptions in ontologies are only descriptions of individuals if they are necessary/and or sufficient representations of attributes (independently) observed and recorded for an individual. In addition, we here present for the first time an entirely new approach to formalizing phenotypic research, a semantic model for the description of a complex organ system in a highly disparate taxon, the arthropods. We demonstrate this with a formalized morphological description of the hemolymph vascular system in one specimen of the European garden spider Araneus diadematus. Our description targets five categories of descriptive statement: "position", "spatial relationships", "shape", "constituents", and "connections", as the corresponding formalizations constitute exemplary patterns useful not only when talking about the circulatory system, but also in descriptions in general. The downstream applications of computer-parsable morphological descriptions are widespread, with their core utility being the fact that they make it possible to compare collective description sets in computational time, that is, very quickly. Among other things, this facilitates the identification of phenotypic plasticity and variation when single individuals are compared, the identification of those traits which correlate between and within taxa, and the identification of links between morphological traits and genetic (using GO, Gene Ontology) or environmental (using ENVO, Environmental Ontology) factors. [Arthropoda; concept; function; hemolymph vascular system; homology; terminology.].


Assuntos
Anatomia/normas , Artrópodes/anatomia & histologia , Classificação/métodos , Terminologia como Assunto , Animais , Fenótipo , Filogenia
14.
Arthropod Struct Dev ; 45(5): 440-451, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27519794

RESUMO

We studied the tracheal system of exemplar species representing three families of Solifugae Sundevall, 1833, i.e., Galeodes granti Pocock, 1903, Ammotrechula wasbaueri Muma, 1962 and Eremobates sp., using µCT-imaging and 3D-reconstruction. This is the first comparative study of the tracheal system of Solifugae in 85 years and the first using high-resolution nondestructive methods. The tracheal system was found to be structurally similar in all three species, with broad major tracheae predominantly in the prosoma as well as anastomoses (i.e., connections between tracheal branches from different stigmata) in the prosoma and opisthosoma. Differences among the three species were observed in the presence or absence of cheliceral air sacs, the number of tracheae supplying the heart, and the ramification of major tracheae in the opisthosoma. The structure of the tracheal system with its extensive branches and some anastomoses is assumed to aid rapid and efficient gas exchange in the respiratory tissues of these active predators. The large diameter of cheliceral tracheae (air sacs) of taxa with disproportionally heavier chelicerae suggests a role in weight reduction, enabling solifuges to reach greater speeds during predation. The air sacs may also permit more rapid and efficient gaseous exchange, necessary to operate the musculature of these structures, thereby improving their use for predation in an environment where prey is scarce.


Assuntos
Aranhas/ultraestrutura , Traqueia/ultraestrutura , Anatomia Comparada , Animais , Imageamento Tridimensional , Oxigênio/metabolismo , Microtomografia por Raio-X
15.
Arthropod Struct Dev ; 44(6 Pt B): 622-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26431635

RESUMO

The study of adaptation to terrestrial life in crabs poses several physiological questions. One of the major challenges the crabs have to face is respiration of air: most of the time, gills are unsuitable to perform oxygen exchange out of the water. Fiddler crabs, like other representatives of the Ocypodidae, have developed an additional mechanism of respiration by improving the circulation that lines the branchiostegal chamber, thus developing a branchiostegal lung. In the present study we describe the hitherto unreported complex morphology of the branchiostegal lung of the fiddler crab Uca vocans by means of corrosion casting techniques and 3D reconstruction. This complexity leads us to reconsider the degree of terrestriality of U. vocans and its evolutionary pathway towards land.


Assuntos
Braquiúros/citologia , Animais , Braquiúros/ultraestrutura , Molde por Corrosão , Imageamento Tridimensional , Pulmão/citologia , Pulmão/ultraestrutura , Microscopia Eletrônica de Varredura , Microtomografia por Raio-X
16.
Zookeys ; (510): 233-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257546

RESUMO

Notostigmophora (Scutigeromorpha) exhibit a special tracheal system compared to other Chilopoda. The unpaired spiracles are localized medially on the long tergites and open into a wide atrium from which hundreds of tracheal tubules originate and extend into the pericardial sinus. Previous investigators reported that the tracheal tubules float freely in the hemolymph. However, here we show for the first time that the tracheal tubules are anchored to a part of the pericardial septum. Another novel finding is this part of the pericardial septum is structured as an aggregated gland on the basis of its specialized epithelium being formed by hundreds of oligocellular glands. It remains unclear whether the pericardial septum has a differently structure in areas that lack a connection with tracheal tubules. The tracheal tubules come into direct contact with the canal cells of the glands that presumably secrete mucous substances covering the entire luminal cuticle of the tracheal tubules. Connections between tracheae and glands have not been observed in any other arthropods.

17.
Arthropod Struct Dev ; 44(6 Pt B): 609-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26143524

RESUMO

The superfamily Austrochiloidea (Austrochilidae and Gradungulidae) take a pivotal position in araneomorph spider phylogeny. In this discussion crevice weaver spiders (Filistatidae) are of equal interest. Especially data from these phylogenetically uncertain yet basal off branching groups can enlighten our understanding on the evolution of organ systems. In the course of a survey on the evolutionary morphology of the circulatory system in spiders we therefore investigated the hemolymph vascular system in two austrochiloid and one filistatid species. Additionally some data on a hypochilid and a gradungulid species are included. Using up-to-date morphological methods, the vascular systems in these spiders are visualized three dimensionally. Ground pattern features of the circulatory systems in austrochiloid spiders are presented and the data discussed along recent lines of phylogenetic hypotheses. Special topics highlighted are the intraspecific variability of the origins of some prosomal arteries and the evolutionary correlation of respiratory and circulatory systems in spiders.


Assuntos
Evolução Biológica , Aranhas/anatomia & histologia , Animais , Feminino , Hemolinfa/diagnóstico por imagem , Microtomografia por Raio-X
18.
Zoology (Jena) ; 118(4): 221-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25964110

RESUMO

Horseshoe crabs (Xiphosura) have been an object of zoological research for almost 200 years. Although some morphological work on the circulatory system has been done, the three-dimensional structure of this complex organ system has never been shown satisfactorily and some crucial questions remain unanswered. Here, the circulatory systems of juveniles of the horseshoe crab taxa Limulus polyphemus and Carcinoscorpius rotundicauda were investigated using a combination of an injection method and micro-computed tomography. Data were processed and 3D-visualized using reconstruction software. Furthermore, the heart was examined using scanning electron microscopy. Additionally, the histology of some structures was investigated via light microscopy and transmission electron microscopy. The results show the high degree of complexity of the arterial and lacunar systems of Xiphosura and provide insights into their three-dimensional structure and relationship to other organ systems such as the central nervous system. We show that the major lacunae, previously described as vessel-like - though indeed highly ramified - can clearly be distinguished from arteries in histological sections because they have no distinct walls. Similarities and differences between the xiphosuran species and arachnids are highlighted and possible phylogenetic implications and evolutionary scenarios discussed.


Assuntos
Evolução Biológica , Vasos Sanguíneos/anatomia & histologia , Caranguejos Ferradura/anatomia & histologia , Animais , Aracnídeos/anatomia & histologia , Vasos Sanguíneos/ultraestrutura , Vasos Coronários/anatomia & histologia , Vasos Coronários/ultraestrutura , Coração/diagnóstico por imagem , Hemolinfa , Caranguejos Ferradura/classificação , Microscopia Eletrônica de Transmissão , Filogenia , Microtomografia por Raio-X
19.
BMC Neurosci ; 16: 19, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25880533

RESUMO

BACKGROUND: While a number of neuroanatomical studies in other malacostracan taxa have recently contributed to the reconstruction of the malacostracan ground pattern, little is known about the nervous system in the three enigmatic blind groups of peracarids from relict habitats, Thermosbaenacea, Spelaeogriphacea, and Mictocarididae. This first detailed description of the brain in a representative of each taxon is largely based on a combination of serial semi-thin sectioning and computer-aided 3D-reconstructions. In addition, the mictocaridid Mictocaris halope was studied with a combination of immunolabeling (tubulin, nuclear counter-stains) and confocal laser scanning microscopy, addressing also the ventral nerve cord. RESULTS: Adjacent to the terminal medulla, all three representatives exhibit a distal protocerebral neuropil, which is reminiscent of the lobula in other Malacostraca, but also allows for an alternative interpretation in M. halope and the thermosbaenacean Tethysbaena argentarii. A central complex occurs in all three taxa, most distinctively in the spelaeogriphacean Spelaeogriphus lepidops. The deutocerebral olfactory lobe in M. halope and S. lepidops is large. The comparably smaller olfactory lobe in T. argentarii appears to be associated with a unique additional deutocerebral neuropil. A small hemiellipsoid body exists only in the protocerebrum of T. argentarii. Distinctive mechanosensory neuropils corresponding to other malacostracans are missing. CONCLUSIONS: The considerable reduction of the optic lobe in the studied taxa is higher than in any other blind malacostracan. The large size of deutocerebral olfactory centers implies an important role of the olfactory sense. The presence of a distinctive central complex in the blind S. lepidops adds further support to a central-coordinating over a visual function of this structure. The lack of a hemiellipsoid body in M. halope and S. lepidops suggests that their terminal medulla takes over the function of a second order olfactory center completely, as in some other peracarids. The reduction of the optic lobe and hemiellipsoid body is suggested to have occurred several times independently within Peracarida. The missing optic sense in the studied taxa is not correlated with an emphasized mechanosense.


Assuntos
Crustáceos/anatomia & histologia , Animais , Cegueira , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Cavernas , Crustáceos/metabolismo , Escuridão , Imageamento Tridimensional , Imuno-Histoquímica , Microscopia Confocal , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Especificidade da Espécie , Tubulina (Proteína)/metabolismo
20.
J Morphol ; 276(1): 1-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25156549

RESUMO

Porcelain crabs (Porcellanidae) are one of three taxa within anomuran crustaceans (Anomala) which possess a crab-like body form. Curiously, these three lineages evolved this shape independently from true crabs (Brachyura) in the course of the evolutionary process termed carcinization. The entire pleon in porcelain crabs is flexed under the cephalothorax and the carapace is approximately as broad as long. Despite their crab-like habitus, porcelain crabs are phylogenetically nested within squat lobsters (Munidopsidae, Munididae, Galatheidae). With a pleon which is only partly flexed under the cephalothorax and a cephalothorax which is longer than it is broad, squat lobsters represent morphologically intermediate forms between lobster-like and crab-like body shapes. Carcinization has so far mostly been studied with respect to outer morphology; however, it is evident that internal anatomical features are influenced through this change of body shape too. In this paper, the situation in Galatheoidea is elucidated by adding more taxa to existing descriptions of the hemolymph vascular systems and associated structures and organs. Micro-computer tomography and 3D reconstruction provide new insights. Autapomorphic states of various internal anatomical characters are present in nearly all the studied species, also reflecting some degree of anatomical disparity found within Galatheoidea. The ventral vessel system of porcelain crabs differs distinctly from that of squat lobsters. The differences in question are coherent (i.e. structural dependent) with morphological transformations in the integument, such as the shortening of the sternal plastron, which evolved in the course of carcinization. Shifts in the gonads and the pleonal neuromeres are coherent with the loss of the caridoid escape reaction, which in turn is a consequence of carcinization. The arterial transformations, however, are minor compared to other instances of carcinization in anomuran crustaceans since the last common ancestor of squat lobsters and porcelain crabs was already "half carcinized".


Assuntos
Evolução Biológica , Decápodes/anatomia & histologia , Animais , Decápodes/genética , Filogenia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...