Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 78: 1-10, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146873

RESUMO

d-chiro-Inositol (DCI) is a promising drug candidate for treating insulin resistance and associated diseases such as type 2 diabetes or polycystic ovary syndrome. In this study, we developed two production processes for DCI using Corynebacterium glutamicum as host. In the first process, myo-inositol (MI) is oxidized to 2-keto-myo-inositol (2KMI) by the inositol dehydrogenase (IDH) IolG and then isomerized to 1-keto-d-chiro-inositol (1KDCI) by the isomerases Cg0212 or Cg2312, both of which were identified in this work. 1KDCI is then reduced to DCI by IolG. Overproduction of IolG and Cg0212 in a chassis strain unable to degrade inositols allowed the production of 1.1 g/L DCI from 10 g/L MI. As both reactions involved are reversible, only a partial conversion of MI to DCI can be achieved. To enable higher conversion ratios, a novel route towards DCI was established by utilizing the promiscuous activity of two plant-derived enzymes, the NAD+-dependent d-ononitol dehydrogenase MtOEPa and the NADPH-dependent d-pinitol dehydrogenase MtOEPb from Medicago truncatula (barrelclover). Heterologous production of these enzymes in the chassis strain led to the production of 1.6 g/L DCI from 10 g/L MI. For replacing the substrate MI by glucose, the two plant genes were co-expressed with the endogenous myo-inositol-1-phosphate synthase gene ino1 either as a synthetic operon or using a novel, bicistronic T7-based expression vector. With the single operon construct, 0.75 g/L DCI was formed from 20 g/L glucose, whereas with the bicistronic construct 1.2 g/L DCI was obtained, disclosing C. glutamicum as an attractive host for of d-chiro-inositol production.


Assuntos
Corynebacterium glutamicum , Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Humanos , Feminino , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inositol/genética , Inositol/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Glucose , Oxirredutases
2.
Microb Cell Fact ; 22(1): 71, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061714

RESUMO

BACKGROUND: Amino acid production features of Corynebacterium glutamicum were extensively studied in the last two decades. Many metabolic pathways, regulatory and transport principles are known, but purely rational approaches often provide only limited progress in production optimization. We recently generated stable synthetic co-cultures, termed Communities of Niche-optimized Strains (CoNoS), that rely on cross-feeding of amino acids for growth. This setup has the potential to evolve strains with improved production by selection of faster growing communities. RESULTS: Here we performed adaptive laboratory evolution (ALE) with a CoNoS to identify mutations that are relevant for amino acid production both in mono- and co-cultures. During ALE with the CoNoS composed of strains auxotrophic for either L-leucine or L-arginine, we obtained a 23% growth rate increase. Via whole-genome sequencing and reverse engineering, we identified several mutations involved in amino acid transport that are beneficial for CoNoS growth. The L-leucine auxotrophic strain carried an expression-promoting mutation in the promoter region of brnQ (cg2537), encoding a branched-chain amino acid transporter in combination with mutations in the genes for the Na+/H+-antiporter Mrp1 (cg0326-cg0321). This suggested an unexpected link of Mrp1 to L-leucine transport. The L-arginine auxotrophic partner evolved expression-promoting mutations near the transcriptional start site of the yet uncharacterized operon argTUV (cg1504-02). By mutation studies and ITC, we characterized ArgTUV as the only L-arginine uptake system of C. glutamicum with an affinity of KD = 30 nM. Finally, deletion of argTUV in an L-arginine producer strain resulted in a faster and 24% higher L-arginine production in comparison to the parental strain. CONCLUSION: Our work demonstrates the power of the CoNoS-approach for evolution-guided identification of non-obvious production traits, which can also advance amino acid production in monocultures. Further rounds of evolution with import-optimized strains can potentially reveal beneficial mutations also in metabolic pathway enzymes. The approach can easily be extended to all kinds of metabolite cross-feeding pairings of different organisms or different strains of the same organism, thereby enabling the identification of relevant transport systems and other favorable mutations.


Assuntos
Aminoácidos , Corynebacterium glutamicum , Aminoácidos/metabolismo , Leucina/metabolismo , Técnicas de Cocultura , Mutação , Arginina , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos
3.
Metab Eng Commun ; 13: e00187, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34824977

RESUMO

The marine bacterium Vibrio natriegens has recently been demonstrated to be a promising new host for molecular biology and next generation bioprocesses. V. natriegens is a Gram-negative, non-pathogenic slight-halophilic bacterium, with a high nutrient versatility and a reported doubling time of under 10 min. However, V. natriegens is not an established model organism yet, and further research is required to promote its transformation into a microbial workhorse. In this work, the potential of V. natriegens as an amino acid producer was investigated. First, the transcription factor-based biosensor LysG, from Corynebacterium glutamicum, was adapted for expression in V. natriegens to facilitate the detection of positively charged amino acids. A set of different biosensor variants were constructed and characterized, using the expression of a fluorescent protein as sensor output. After random mutagenesis, one of the LysG-based sensors was used to screen for amino acid producer strains. Here, fluorescence-activated cell sorting enabled the selective sorting of highly fluorescent cells, i.e. potential producer cells. Using this approach, individual L-lysine, L-arginine and L-histidine producers could be obtained producing up to 1 mM of the effector amino acid, extracellularly. Genome sequencing of the producer strains provided insight into the amino acid production metabolism of V. natriegens. This work demonstrates the successful expression and application of transcription factor-based biosensors in V. natriegens and provides insight into the underlying physiology, forming a solid basis for further development of this promising microbe.

4.
Microb Biotechnol ; 14(6): 2592-2604, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34437751

RESUMO

5-Ketofructose (5-KF) is a promising low-calorie natural sweetener with the potential to reduce health problems caused by excessive sugar consumption. It is formed by periplasmic oxidation of fructose by fructose dehydrogenase (Fdh) of Gluconobacter japonicus, a membrane-bound three-subunit enzyme containing FAD and three haemes c as prosthetic groups. This study aimed at establishing Pseudomonas putida KT2440 as a new cell factory for 5-KF production, as this host offers a number of advantages compared with the established host Gluconobacter oxydans. Genomic expression of the fdhSCL genes from G. japonicus enabled synthesis of functional Fdh in P. putida and successful oxidation of fructose to 5-KF. In a batch fermentation, 129 g l-1 5-KF were formed from 150 g l-1 fructose within 23 h, corresponding to a space-time yield of 5.6 g l-1 h-1 . Besides fructose, also sucrose could be used as substrate for 5-KF production by plasmid-based expression of the invertase gene inv1417 from G. japonicus. In a bioreactor cultivation with pulsed sucrose feeding, 144 g 5-KF were produced from 358 g sucrose within 48 h. These results demonstrate that P. putida is an attractive host for 5-KF production.


Assuntos
Pseudomonas putida , Edulcorantes , Frutose/análogos & derivados , Engenharia Metabólica , Oxirredutases , Pseudomonas putida/genética , Sacarose
5.
Metab Eng ; 67: 173-185, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224896

RESUMO

Scyllo-inositol has been identified as a potential drug for the treatment of Alzheimer's disease. Therefore, cost-efficient processes for the production of this compound are desirable. In this study, we analyzed and engineered Corynebacterium glutamicum with the aim to develop competitive scyllo-inositol producer strains. Initial studies revealed that C. glutamicum naturally produces scyllo-inositol when cultured with myo-inositol as carbon source. The conversion involves NAD+-dependent oxidation of myo-inositol to 2-keto-myo-inositol followed by NADPH-dependent reduction to scyllo-inositol. Use of myo-inositol for biomass formation was prevented by deletion of a cluster of 16 genes involved in myo-inositol catabolism (strain MB001(DE3)Δiol1). Deletion of a second cluster of four genes (oxiC-cg3390-oxiD-oxiE) related to inositol metabolism prevented conversion of 2-keto-myo-inositol to undesired products causing brown coloration (strain MB001(DE3)Δiol1Δiol2). The two chassis strains were used for plasmid-based overproduction of myo-inositol dehydrogenase (IolG) and scyllo-inositol dehydrogenase (IolW). In BHI medium containing glucose and myo-inositol, a complete conversion of the consumed myo-inositol into scyllo-inositol was achieved with the Δiol1Δiol2 strain. To enable scyllo-inositol production from cheap carbon sources, myo-inositol 1-phosphate synthase (Ino1) and myo-inositol 1-phosphatase (ImpA), which convert glucose 6-phosphate into myo-inositol, were overproduced in addition to IolG and IolW using plasmid pSI. Strain MB001(DE3)Δiol1Δiol2 (pSI) produced 1.8 g/L scyllo-inositol from 20 g/L glucose and even 4.4 g/L scyllo-inositol from 20 g/L sucrose within 72 h. Our results demonstrate that C. glutamicum is an attractive host for the biotechnological production of scyllo-inositol and potentially further myo-inositol-derived products.


Assuntos
Doença de Alzheimer , Corynebacterium glutamicum , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Bacillus subtilis/genética , Corynebacterium glutamicum/genética , Humanos , Inositol , Engenharia Metabólica
6.
J Biotechnol ; 338: 20-30, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237394

RESUMO

Terpenes constitute one of the largest groups of secondary metabolites that are used, for example, as food-additives, fragrances or pharmaceuticals. Due to the formation of an intracytoplasmic membrane system and an efficient intrinsic tetraterpene pathway, the phototrophic α-proteobacterium Rhodobacter capsulatus offers favorable properties for the production of hydrophobic terpenes. However, research efforts have largely focused on sesquiterpene production. Recently, we have developed modular tools allowing to engineer the biosynthesis of terpene precursors. These tools were now applied to boost the biosynthesis of the diterpene casbene, the triterpene squalene and the tetraterpene ß-carotene in R. capsulatus SB1003. Selected enzymes of the intrinsic isoprenoid pathway and the heterologous mevalonate (MVA) pathway were co-expressed together with the respective terpene synthases in various combinations. Remarkably, co-expression of genes ispA, idi and dxs enhanced the synthesis of casbene and ß-carotene. In contrast, co-expression of precursor biosynthetic genes with the squalene synthase from Arabidopsis thaliana reduced squalene titers. Therefore, we further employed four alternative pro- and eukaryotic squalene synthases. Here, the synthase from Methylococcus capsulatus enabled highest product levels of 90 mg/L squalene upon co-expression with ispA. In summary, we demonstrate the applicability of R. capsulatus for the heterologous production of diverse terpene classes and provide relevant insights for further development of such platforms.


Assuntos
Rhodobacter capsulatus , Triterpenos , Ácido Mevalônico , Rhodobacter capsulatus/genética , Esqualeno , Terpenos
7.
Viruses ; 13(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802915

RESUMO

In this study, we provide a comprehensive analysis of the genomic features of the phage CL31 and the infection dynamics with the biotechnologically relevant host strain Corynebacterium glutamicum ATCC 13032. Genome sequencing and annotation of CL31 revealed a 45-kbp genome composed of 72 open reading frames, mimicking the GC content of its host strain (54.4%). An ANI-based distance matrix showed the highest similarity of CL31 to the temperate corynephage Φ16. While the C. glutamicum ATCC 13032 wild type strain showed only mild propagation of CL31, a strain lacking the cglIR-cglIIR-cglIM restriction-modification system was efficiently infected by this phage. Interestingly, the prophage-free strain C. glutamicum MB001 featured an even accelerated amplification of CL31 compared to the ∆resmod strain suggesting a role of cryptic prophage elements in phage defense. Proteome analysis of purified phage particles and transcriptome analysis provide important insights into structural components of the phage and the response of C. glutamicum to CL31 infection. Isolation and sequencing of CL31-resistant strains revealed SNPs in genes involved in mycolic acid biosynthesis suggesting a role of this cell envelope component in phage adsorption. Altogether, these results provide an important basis for further investigation of phage-host interactions in this important biotechnological model organism.


Assuntos
Bacteriófagos , Corynebacterium glutamicum/virologia , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/fisiologia , Sequência de Bases , DNA Viral , Interações entre Hospedeiro e Microrganismos
8.
Front Microbiol ; 11: 544045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193127

RESUMO

γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid mainly formed by decarboxylation of L-glutamate and is widespread in nature from microorganisms to plants and animals. In this study, we analyzed the regulation of GABA utilization by the Gram-positive soil bacterium Corynebacterium glutamicum, which serves as model organism of the phylum Actinobacteria. We show that GABA usage is subject to both specific and global regulatory mechanisms. Transcriptomics revealed that the gabTDP genes encoding GABA transaminase, succinate semialdehyde dehydrogenase, and GABA permease, respectively, were highly induced in GABA-grown cells compared to glucose-grown cells. Expression of the gabTDP genes was dependent on GABA and the PucR-type transcriptional regulator GabR, which is encoded divergently to gabT. A ΔgabR mutant failed to grow with GABA, but not with glucose. Growth of the mutant on GABA was restored by plasmid-based expression of gabR or of gabTDP, indicating that no further genes are specifically required for GABA utilization. Purified GabR (calculated mass 55.75 kDa) formed an octamer with an apparent mass of 420 kDa and bound to two inverted repeats in the gabR-gabT intergenic region. Glucose, gluconate, and myo-inositol caused reduced expression of gabTDP, presumably via the cAMP-dependent global regulator GlxR, for which a binding site is present downstream of the gabT transcriptional start site. C. glutamicum was able to grow with GABA as sole carbon and nitrogen source. Ammonium and, to a lesser extent, urea inhibited growth on GABA, whereas L-glutamine stimulated it. Possible mechanisms for these effects are discussed.

9.
ACS Synth Biol ; 9(8): 2023-2038, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32649183

RESUMO

Inducible expression systems represent key modules in regulatory circuit design and metabolic engineering approaches. However, established systems are often limited in terms of applications due to high background expression levels and inducer toxicity. In bacteria, xenogeneic silencing (XS) proteins are involved in the tight control of horizontally acquired, AT-rich DNA. The action of XS proteins may be opposed by interference with a specific transcription factor, resulting in the phenomenon of counter-silencing, thereby activating gene expression. In this study, we harnessed this principle for the construction of a synthetic promoter library consisting of phage promoters targeted by the Lsr2-like XS protein CgpS of Corynebacterium glutamicum. Counter-silencing was achieved by inserting the operator sequence of the gluconate-responsive transcription factor GntR. The GntR-dependent promoter library is comprised of 28 activated and 16 repressed regulatory elements featuring effector-dependent tunability. For selected candidates, background expression levels were confirmed to be significantly reduced in comparison to established heterologous expression systems. Finally, a GntR-dependent metabolic toggle switch was implemented in a C. glutamicum l-valine production strain allowing the dynamic redirection of carbon flux between biomass and product formation.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Engenharia Metabólica/métodos , Sítios de Ligação , Expressão Gênica , Biblioteca Gênica , Inativação Gênica , Gluconatos/metabolismo , Glucose/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Valina/metabolismo
10.
Microb Cell Fact ; 19(1): 54, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131833

RESUMO

BACKGROUND: 5-Ketofructose (5-KF) has recently been identified as a promising non-nutritive natural sweetener. Gluconobacter oxydans strains have been developed that allow efficient production of 5-KF from fructose by plasmid-based expression of the fructose dehydrogenase genes fdhSCL of Gluconobacter japonicus. As plasmid-free strains are preferred for industrial production of food additives, we aimed at the construction of efficient 5-KF production strains with the fdhSCL genes chromosomally integrated. RESULTS: For plasmid-free 5-KF production, we selected four sites in the genome of G. oxydans IK003.1 and inserted the fdhSCL genes under control of the strong P264 promoter into each of these sites. All four recombinant strains expressed fdhSCL and oxidized fructose to 5-KF, but site-specific differences were observed suggesting that the genomic vicinity influenced gene expression. For further improvement, a second copy of the fdhSCL genes under control of P264 was inserted into the second-best insertion site to obtain strain IK003.1::fdhSCL2. The 5-KF production rate and the 5-KF yield obtained with this double-integration strain were considerably higher than for the single integration strains and approached the values of IK003.1 with plasmid-based fdhSCL expression. CONCLUSION: We identified four sites in the genome of G. oxydans suitable for expression of heterologous genes and constructed a strain with two genomic copies of the fdhSCL genes enabling efficient plasmid-free 5-KF production. This strain will serve as basis for further metabolic engineering strategies aiming at the use of alternative carbon sources for 5-KF production and for bioprocess optimization.


Assuntos
Frutose/análogos & derivados , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Engenharia Metabólica , Edulcorantes/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Cromossomos Bacterianos , Clonagem Molecular , Frutose/biossíntese , Expressão Gênica , Genoma Bacteriano , Oxirredução , Plasmídeos , Regiões Promotoras Genéticas
11.
Microbiologyopen ; 4(5): 743-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175208

RESUMO

The Pseudomonas aeruginosa genome encodes a variety of different proteolytic enzymes several of which play an important role as virulence factors. Interestingly, only two of these proteases are predicted to belong to the subtilase family and we have recently studied the physiological role of the subtilase SprP. Here, we describe the functional overexpression of SprP in Escherichia coli using a novel expression and secretion system. We show that SprP is autocatalytically activated by proteolysis and exhibits optimal activity at 50°C in a pH range of 7-8. We also demonstrate a significant increase in sprP promoter activity upon growth of P. aeruginosa at 43°C indicating a role for SprP in heat shock response.


Assuntos
Pseudomonas aeruginosa/enzimologia , Subtilisinas/isolamento & purificação , Subtilisinas/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Proteólise , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Subtilisinas/química , Subtilisinas/genética , Temperatura
12.
BMC Microbiol ; 15: 30, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25887755

RESUMO

BACKGROUND: Light, oxygen, voltage (LOV) domains are widely distributed in plants, algae, fungi, bacteria, and represent the photo-responsive domains of various blue-light photoreceptor proteins. Their photocycle involves the blue-light triggered adduct formation between the C(4a) atom of a non-covalently bound flavin chromophore and the sulfur atom of a conserved cysteine in the LOV sensor domain. LOV proteins show considerable variation in the structure of N- and C-terminal elements which flank the LOV core domain, as well as in the lifetime of the adduct state. RESULTS: Here, we report the photochemical, structural and functional characterization of DsLOV, a LOV protein from the photoheterotrophic marine α-proteobacterium Dinoroseobacter shibae which exhibits an average adduct state lifetime of 9.6 s at 20°C, and thus represents the fastest reverting bacterial LOV protein reported so far. Mutational analysis in D. shibae revealed a unique role of DsLOV in controlling the induction of photopigment synthesis in the absence of blue-light. The dark state crystal structure of DsLOV determined at 1.5 Å resolution reveals a conserved core domain with an extended N-terminal cap. The dimer interface in the crystal structure forms a unique network of hydrogen bonds involving residues of the N-terminus and the ß-scaffold of the core domain. The structure of photoexcited DsLOV suggests increased flexibility in the N-cap region and a significant shift in the Cα backbone of ß strands in the N- and C-terminal ends of the LOV core domain. CONCLUSIONS: The results presented here cover the characterization of the unusual short LOV protein DsLOV from Dinoroseobacter shibae including its regulatory function, extremely fast dark recovery and an N-terminus mediated dimer interface. Due to its unique photophysical, structural and regulatory properties, DsLOV might thus serve as an alternative model system for studying light perception by LOV proteins and physiological responses in bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Rhodobacteraceae/química , Organismos Aquáticos/química , Organismos Aquáticos/crescimento & desenvolvimento , Cristalização/métodos , Cristalografia por Raios X , Análise Mutacional de DNA , Modelos Moleculares , Processos Fototróficos , Pigmentos Biológicos/metabolismo , Conformação Proteica , Multimerização Proteica , Rhodobacteraceae/crescimento & desenvolvimento
13.
Biotechnol J ; 10(5): 811-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25755120

RESUMO

Tedious, time- and labor-intensive protein purification and immobilization procedures still represent a major bottleneck limiting the widespread application of enzymes in synthetic chemistry and industry. We here exemplify a simple strategy for the direct site-specific immobilization of proteins from crude cell extracts by fusion of a family 2 carbohydrate-binding module (CBM) derived from the exoglucanase/xylanase Cex from Cellulomonas fimi to a target enzyme. By employing a tripartite fusion protein consisting of the CBM, a flavin-based fluorescent protein (FbFP), and the Arabidopsis thaliana hydroxynitrile lyase (AtHNL), binding to cellulosic carrier materials can easily be monitored via FbFP fluorescence. Adsorption properties (kinetics and quantities) were studied for commercially available Avicel PH-101 and regenerated amorphous cellulose (RAC) derived from Avicel. The resulting immobilizates showed similar activities as the wild-type enzyme but displayed increased stability in the weakly acidic pH range. Finally, Avicel, RAC and cellulose acetate (CA) preparations were used for the synthesis of (R)-mandelonitrile in micro-aqueous methyl tert-butyl ether (MTBE) demonstrating the applicability and stability of the immobilizates for biotransformations in both aqueous and organic reaction systems.


Assuntos
Aldeído Liases/isolamento & purificação , Arabidopsis/genética , Cellulomonas/enzimologia , Enzimas Imobilizadas/isolamento & purificação , Glicosídeo Hidrolases/química , Aldeído Liases/química , Aldeído Liases/genética , Arabidopsis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cellulomonas/química , Cellulomonas/genética , Estabilidade Enzimática , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
Mol Microbiol ; 93(5): 1066-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25039543

RESUMO

In all photosynthetic organisms, chlorophylls function as light-absorbing photopigments allowing the efficient harvesting of light energy. Chlorophyll biosynthesis recurs in similar ways in anoxygenic phototrophic proteobacteria as well as oxygenic phototrophic cyanobacteria and plants. Here, the biocatalytic conversion of protochlorophyllide to chlorophyllide is catalysed by evolutionary and structurally distinct protochlorophyllide reductases (PORs) in anoxygenic and oxygenic phototrophs. It is commonly assumed that anoxygenic phototrophs only contain oxygen-sensitive dark-operative PORs (DPORs), which catalyse protochlorophyllide reduction independent of the presence of light. In contrast, oxygenic phototrophs additionally (or exclusively) possess oxygen-insensitive but light-dependent PORs (LPORs). Based on this observation it was suggested that light-dependent protochlorophyllide reduction first emerged as a consequence of increased atmospheric oxygen levels caused by oxygenic photosynthesis in cyanobacteria. Here, we provide experimental evidence for the presence of an LPOR in the anoxygenic phototrophic α-proteobacterium Dinoroseobacter shibae DFL12(T). In vitro and in vivo functional assays unequivocally prove light-dependent protochlorophyllide reduction by this enzyme and reveal that LPORs are not restricted to cyanobacteria and plants. Sequence-based phylogenetic analyses reconcile our findings with current hypotheses about the evolution of LPORs by suggesting that the light-dependent enzyme of D. shibae DFL12(T) might have been obtained from cyanobacteria by horizontal gene transfer.


Assuntos
Alphaproteobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise/efeitos da radiação , Luz , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxigênio/metabolismo , Processos Fototróficos/efeitos da radiação , Filogenia , Protoclorifilida/metabolismo , Alinhamento de Sequência , Triticum/microbiologia
15.
Appl Environ Microbiol ; 79(15): 4727-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23728815

RESUMO

Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) was fused to different fluorescent reporter proteins. Whereas all fusion constructs retained enzymatic activity and fluorescence in vivo and in vitro, significant differences in activity and pH stability were observed. In particular, flavin-based fluorescent reporter (FbFP) fusions showed almost 2 orders of magnitude-increased half-lives in the weakly acidic pH range compared to findings for the wild-type enzyme. Analysis of the quaternary structure of the respective FbFP-AtHNL fusion proteins suggested that this increased stability is apparently caused by oligomerization mediated via the FbFP tag. Moreover, the increased stability of the fusion proteins enabled the efficient synthesis of (R)-mandelonitrile in an aqueous-organic two-phase system at a pH of <5. Remarkably, (R)-mandelonitrile synthesis is not possible using wild-type AtHNL under the same conditions due to the inherent instability of this enzyme below pH 5. The fusion strategy presented here reveals a surprising means for the stabilization of enzymes and stresses the importance of a thorough in vitro characterization of in vivo-employed fluorescent fusion proteins.


Assuntos
Aldeído Liases/metabolismo , Arabidopsis/genética , Escherichia coli/genética , Proteínas Recombinantes de Fusão/metabolismo , Aldeído Liases/genética , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Escherichia coli/enzimologia , Flavinas/genética , Flavinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/genética
16.
ACS Synth Biol ; 2(1): 22-33, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23656323

RESUMO

Secondary metabolites represent a virtually inexhaustible source of natural molecules exhibiting a high potential as pharmaceuticals or chemical building blocks. To gain broad access to these compounds, sophisticated expression systems are needed that facilitate the transfer and expression of large chromosomal regions, whose genes encode complex metabolic pathways. Here, we report on the development of the novel system for the transfer and expression of biosynthetic pathways (TREX), which comprises all functional elements necessary for the delivery and concerted expression of clustered pathway genes in different bacteria. TREX employs (i) conjugation for DNA transfer, (ii) randomized transposition for its chromosomal insertion, and (iii) T7 RNA polymerase for unimpeded bidirectional gene expression. The applicability of the TREX system was demonstrated by establishing the biosynthetic pathways of two pigmented secondary metabolites, zeaxanthin and prodigiosin, in bacteria with different metabolic capacities. Thus, TREX represents a valuable tool for accessing natural products by allowing comparative expression studies with clustered genes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Vias Biossintéticas , Cromossomos Bacterianos , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Família Multigênica , Mutagênese Insercional , Prodigiosina/metabolismo , Proteínas Virais/metabolismo , Xantofilas/genética , Zeaxantinas
17.
18.
Anal Bioanal Chem ; 398(7-8): 2803-11, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20803196

RESUMO

Redox cofactors like NADH and NADPH are essential for the catalytic activity of several oxidoreductases. Here, we describe a comparative study of the thermal degradation products of both cofactors in the dry and liquid states. The degradation products were first separated, detected, and quantified by high-performance liquid chromatography (HPLC). Subsequently, selected main fractions were investigated by nanoelectrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (MS). Additionally, HPLC-MS was used to elucidate the structure of all degradation products. From these data, degradation pathways for both the liquid and the solid states were elucidated. Thermal degradation in water is significantly faster compared to degradation in the solid state. Hydrolysis and oxidative ring opening of the reduced nicotinamide adenine dinucleotide (phosphate) were shown to be the main reaction paths. Surprisingly, no significant differences were observed between the degradation of both cofactors in solution and in the solid state. Our results demonstrate that the stability of both cofactors is not limiting at moderate temperatures if they are used in the dry state (e.g., solid/gas catalysis). Significant degradation of dry cofactors was only observed under conditions, which are usually not appropriate for biocatalysis (>95 °C). Besides, the situation is completely different in solution where degradation is already observed at moderate temperatures.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , NADP/química , NAD/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Fourier , Temperatura Alta
19.
Biochemistry ; 48(43): 10321-33, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19772355

RESUMO

We previously characterized a LOV protein PpSB2-LOV, present in the common soil bacterium Pseudomonas putida, that exhibits a plant phototropin LOV-like photochemistry [Krauss, U., Losi, A., Gartner, W., Jaeger, K. E., and Eggert, T. (2005) Phys. Chem. Chem. Phys. 7, 2804-2811]. Now, we have identified a second LOV homologue, PpSB1-LOV, found in the same organism with approximately 66% identical amino acids. Both proteins consist of a conserved LOV core flanked by short N- and C-terminal extensions but lack a fused effector domain. Although both proteins are highly similar in sequence, they display drastically different dark recovery kinetics. At 20 degrees C, PpSB2-LOV reverts with an average time constant of 137 s from the photoequilibrium to the dark state, whereas PpSB1-LOV exhibits an average dark recovery time constant of 1.48 x 10(5) s. Irrespective of the significant differences in their dark recovery behavior, both proteins showed nearly identical kinetics for the photochemically induced adduct formation. In order to elucidate the structural and mechanistic basis of these extremely different dark recovery time constants, we performed a mutational analysis. Six amino acids in a distance of up to 6 A from the flavin chromophore, which differ between the two proteins, were identified and interchanged by site-directed mutagenesis. The amino acid substitution R66I located near the FMN phosphate in LOV domains was identified in PpSB1-LOV to accelerate the dark recovery by 2 orders of magnitude. Vice versa, the corresponding substitution I66R slowed down the dark recovery in PpSB2-LOV by a factor of 10. Interestingly, the interchange of the C-terminal extensions between the two proteins also had a pronounced effect on the dark recovery time constants, thus highlighting a coupling of these protein regions to the chromophore binding pocket.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Simulação por Computador , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudomonas putida/genética , Espectrometria de Fluorescência
20.
J Biotechnol ; 126(4): 440-53, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16822574

RESUMO

The influence of glutamate dehydrogenase activity on nitrogen regulation in Corynebacterium glutamicum was investigated. As shown by RNA hybridization experiments deletion of the gdh gene results in a rearrangement of nitrogen metabolism. Even when sufficiently supplied with nitrogen sources, a gdh deletion strain showed the typical nitrogen starvation response of C. glutamicum. These changes in transcription correlate with distinct alterations of intracellular metabolite pattern. Metabolite analyses of different mutant strains and the wild type indicated that ammonium and 2-oxoglutarate might influence the nitrogen regulation system of C. glutamicum cells.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Mutação , Nitrogênio/metabolismo , Deleção de Genes , Genes Bacterianos , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...