Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 8(6)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764187

RESUMO

The lateral septum (LS) is implicated as a hub that regulates a variety of affects, such as reward, feeding, anxiety, fear, sociability, and memory. However, it remains unclear how the LS, previously treated as a structure of homogeneity, exhibits such multifaceted functions. Emerging evidence suggests that different functions of the LS are mediated largely by its diverse input and output connections. It has also become clear that the LS is a heterogeneous region, where its dorsal and ventral poles play dissociable and often opposing roles. This functional heterogeneity can often be explained by distinct dorsal and ventral hippocampal inputs along the LS dorsoventral axis, as well as antagonizing connections between LS subregions. Similarly, outputs from LS subregions to respective downstream targets, such as hypothalamic, preoptic, and tegmental areas, also account for this functional heterogeneity. In this review, we provide an updated perspective on LS subregion classification, connectivity, and functions. We also identify key questions that have yet to be addressed in the field.


Assuntos
Medo , Hipocampo , Ansiedade , Vias Neurais , Recompensa
2.
Am J Physiol Gastrointest Liver Physiol ; 301(6): G981-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21903763

RESUMO

Increased cholangiocyte growth is critical for the maintenance of biliary mass during liver injury by bile duct ligation (BDL). Circulating levels of testosterone decline following castration and during cholestasis. Cholangiocytes secrete sex hormones sustaining cholangiocyte growth by autocrine mechanisms. We tested the hypothesis that testosterone is an autocrine trophic factor stimulating biliary growth. The expression of androgen receptor (AR) was determined in liver sections, male cholangiocytes, and cholangiocyte cultures [normal rat intrahepatic cholangiocyte cultures (NRICC)]. Normal or BDL (immediately after surgery) rats were treated with testosterone or antitestosterone antibody or underwent surgical castration (followed by administration of testosterone) for 1 wk. We evaluated testosterone serum levels; intrahepatic bile duct mass (IBDM) in liver sections of female and male rats following the administration of testosterone; and secretin-stimulated cAMP levels and bile secretion. We evaluated the expression of 17ß-hydroxysteroid dehydrogenase 3 (17ß-HSD3, the enzyme regulating testosterone synthesis) in cholangiocytes. We evaluated the effect of testosterone on the proliferation of NRICC in the absence/presence of flutamide (AR antagonist) and antitestosterone antibody and the expression of 17ß-HSD3. Proliferation of NRICC was evaluated following stable knock down of 17ß-HSD3. We found that cholangiocytes and NRICC expressed AR. Testosterone serum levels decreased in castrated rats (prevented by the administration of testosterone) and rats receiving antitestosterone antibody. Castration decreased IBDM and secretin-stimulated cAMP levels and ductal secretion of BDL rats. Testosterone increased 17ß-HSD3 expression and proliferation in NRICC that was blocked by flutamide and antitestosterone antibody. Knock down of 17ß-HSD3 blocks the proliferation of NRICC. Drug targeting of 17ß-HSD3 may be important for managing cholangiopathies.


Assuntos
Comunicação Autócrina/fisiologia , Colestase Intra-Hepática/patologia , Colestase Intra-Hepática/fisiopatologia , Orquiectomia , Testosterona/fisiologia , 17-Hidroxiesteroide Desidrogenases/metabolismo , Androgênios/sangue , Androgênios/farmacologia , Androgênios/fisiologia , Animais , Apoptossomas , Comunicação Autócrina/efeitos dos fármacos , Bile/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/fisiopatologia , Divisão Celular/fisiologia , Colestase Intra-Hepática/tratamento farmacológico , AMP Cíclico/metabolismo , Feminino , Masculino , Ratos , Ratos Endogâmicos F344 , Receptores Androgênicos/metabolismo , Secretina/metabolismo , Testosterona/sangue , Testosterona/farmacologia
3.
Am J Pathol ; 178(2): 472-84, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21281779

RESUMO

The proliferation of cholangiocytes occurs during the progression of cholestatic liver diseases and is critical for the maintenance and/or restoration of biliary mass during bile duct damage. The ability of cholangiocytes to proliferate is important in many different human pathologic conditions. Recent studies have brought to light the concept that proliferating cholangiocytes serve as a unique neuroendocrine compartment in the liver. During extrahepatic cholestasis and other pathologic conditions that trigger ductular reaction, proliferating cholangiocytes acquire a neuroendocrine phenotype. Cholangiocytes have the capacity to secrete and respond to a variety of hormones, neuropeptides, and neurotransmitters, regulating their surrounding cell functions and proliferative activity. In this review, we discuss the regulation of cholangiocyte growth by neuroendocrine factors in animal models of cholestasis and liver injury, which includes a discussion of the acquisition of neuroendocrine phenotypes by proliferating cholangiocytes and how this relates to cholangiopathies. We also review what is currently known about the neuroendocrine phenotypes of cholangiocytes in human cholestatic liver diseases (ie, cholangiopathies) that are characterized by ductular reaction.


Assuntos
Sistema Biliar/patologia , Colestase/complicações , Colestase/etiologia , Hepatopatias/complicações , Hepatopatias/etiologia , Neurotransmissores/metabolismo , Animais , Proliferação de Células , Colestase/patologia , Humanos , Hepatopatias/patologia , Neurotransmissores/química , Transdução de Sinais
4.
Dig Liver Dis ; 43(5): 395-403, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21334995

RESUMO

BACKGROUND: Simvastatin is a cholesterol-lowering drug that is widely used to prevent and treat atherosclerotic cardiovascular disease. Simvastatin exhibits numerous pleiotropic effects including anti-cancer activity. However, the effect of simvastatin on cholangiocarcinoma has not been evaluated. AIM: The aim of our study was to determine the effect of simvastatin on cholangiocarcinoma proliferation. METHODS: The effect of simvastatin was evaluated in five human cholangiocarcinoma cell lines (Mz-ChA-1, HuH-28, TFK-1, SG231, and HuCCT1) and normal cholangiocyte cell line (HiBEpiC). RESULTS: We found that simvastatin stimulates a reduction in cell viability and apoptosis of cholangiocarcinoma cell lines, whilst in normal human cholangiocytes, HiBEpiC, simvastatin inhibits proliferation with no effect on apoptosis. Simvastatin-induced reduction of cell viability was partially blocked by pre-treatment with metabolites of the mevalonate pathway. In Mz-ChA-1 cells, pre-treatment with cholesterol alone stimulated an increase in the number of viable cells and fully restored cell viability following simvastatin treatment. Treatment with simvastatin triggered the loss of lipid raft localised Rac1 and reduction of Rac1 activity in Mz-ChA-1 cells. This effect was prevented by pre-treatment with cholesterol. CONCLUSION: Collectively, our results demonstrate that simvastatin induces cholangiocarcinoma cancer cell death by disrupting Rac1/lipid raft colocalisation and depression of Rac1 activity.


Assuntos
Anticolesterolemiantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Células Epiteliais/efeitos dos fármacos , Sinvastatina/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas , Proteínas rac1 de Ligação ao GTP/efeitos dos fármacos
5.
Hepatology ; 53(2): 628-39, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21274883

RESUMO

UNLABELLED: Small cholangiocytes proliferate via activation of calcium (Ca(2+) )-dependent signaling in response to pathological conditions that trigger the damage of large cyclic adenosine monophosphate-dependent cholangiocytes. Although our previous studies suggest that small cholangiocyte proliferation is regulated by the activation of Ca(2+) -dependent signaling, the intracellular mechanisms regulating small cholangiocyte proliferation are undefined. Therefore, we sought to address the role and mechanisms of action by which phenylephrine, an α(1) -adrenergic agonist stimulating intracellular D-myo-inositol-1,4,5-triphosphate (IP(3) )/Ca(2+) levels, regulates small cholangiocyte proliferation. Small and large bile ducts and cholangiocytes expressed all AR receptor subtypes. Small (but not large) cholangiocytes respond to phenylephrine with increased proliferation via the activation of IP(3) /Ca(2+) -dependent signaling. Phenylephrine stimulated the production of intracellular IP(3) . The Ca(2+) -dependent transcription factors, nuclear factor of activated T cells 2 (NFAT2) and NFAT4, were predominantly expressed by small bile ducts and small cholangiocytes. Phenylephrine stimulated the Ca(2+) -dependent DNA-binding activities of NFAT2, NFAT4, and Sp1 (but not Sp3) and the nuclear translocation of NFAT2 and NFAT4 in small cholangiocytes. To determine the relative roles of NFAT2, NFAT4, or Sp1, we knocked down the expression of these transcription factors with small hairpin RNA. We observed an inhibition of phenylephrine-induced proliferation in small cholangiocytes lacking the expression of NFAT2 or Sp1. Phenylephrine stimulated small cholangiocyte proliferation is regulated by Ca(2+) -dependent activation of NFAT2 and Sp1. CONCLUSION: Selective stimulation of Ca(2+) -dependent small cholangiocyte proliferation may be key to promote the repopulation of the biliary epithelium when large bile ducts are damaged during cholestasis or by toxins.


Assuntos
Ductos Biliares/citologia , Ductos Biliares/metabolismo , Cálcio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Fator de Transcrição Sp1/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Ductos Biliares/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Animais , Fatores de Transcrição NFATC/efeitos dos fármacos , Fatores de Transcrição NFATC/genética , Fenilefrina/farmacologia , RNA Interferente Pequeno/farmacologia , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Fator de Transcrição Sp1/efeitos dos fármacos , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/metabolismo
6.
Hepatology ; 52(1): 204-14, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20578263

RESUMO

UNLABELLED: During bile duct ligation (BDL), the growth of large cholangiocytes is regulated by the cyclic adenosine monophosphate (cAMP)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and is closely associated with increased secretin receptor (SR) expression. Although it has been suggested that SR modulates cholangiocyte growth, direct evidence for secretin-dependent proliferation is lacking. SR wild-type (WT) (SR(+/+)) or SR knockout (SR(-/-)) mice underwent sham surgery or BDL for 3 or 7 days. We evaluated SR expression, cholangiocyte proliferation, and apoptosis in liver sections and proliferating cell nuclear antigen (PCNA) protein expression and ERK1/2 phosphorylation in purified large cholangiocytes from WT and SR(-/-) BDL mice. Normal WT mice were treated with secretin (2.5 nmoles/kg/day by way of osmotic minipumps for 1 week), and biliary mass was evaluated. Small and large cholangiocytes were used to evaluate the in vitro effect of secretin (100 nM) on proliferation, protein kinase A (PKA) activity, and ERK1/2 phosphorylation. SR expression was also stably knocked down by short hairpin RNA, and basal and secretin-stimulated cAMP levels (a functional index of biliary growth) and proliferation were determined. SR was expressed by large cholangiocytes. Knockout of SR significantly decreased large cholangiocyte growth induced by BDL, which was associated with enhanced apoptosis. PCNA expression and ERK1/2 phosphorylation were decreased in large cholangiocytes from SR(-/-) BDL compared with WT BDL mice. In vivo administration of secretin to normal WT mice increased ductal mass. In vitro, secretin increased proliferation, PKA activity, and ERK1/2 phosphorylation of large cholangiocytes that was blocked by PKA and mitogen-activated protein kinase kinase inhibitors. Stable knockdown of SR expression reduced basal cholangiocyte proliferation. SR is an important trophic regulator sustaining biliary growth. CONCLUSION: The current study provides strong support for the potential use of secretin as a therapy for ductopenic liver diseases.


Assuntos
Ductos Biliares/patologia , Colestase Extra-Hepática/complicações , Hepatopatias/etiologia , Fígado/patologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Animais , Apoptose , Ductos Biliares/efeitos dos fármacos , Proliferação de Células , Colestase Extra-Hepática/genética , Colestase Extra-Hepática/patologia , Técnicas de Inativação de Genes , Hiperplasia/genética , Hiperplasia/patologia , Fígado/efeitos dos fármacos , Hepatopatias/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Tamanho do Órgão , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais/genética , Secretina/farmacologia
7.
Dig Liver Dis ; 42(4): 245-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20153989

RESUMO

Bile duct epithelial cells (i.e., cholangiocytes), which line the intrahepatic biliary epithelium, are the target cells in a number of human cholestatic liver diseases (termed cholangiopathies). Cholangiocyte proliferation and death is present in virtually all human cholangiopathies. A number of recent studies have provided insights into the key mechanisms that regulate the proliferation and function of cholangiocytes during the pathogenesis of cholestatic liver diseases. In our review, we have summarised the most important of these recent studies over the past 3 years with a focus on those performed in the animal model of extrahepatic bile duct ligation. In the first part of the review, we provide relevant background on the biliary ductal system. We then proceed with a general discussion of the factors regulating biliary proliferation performed in the cholestatic animal model of bile duct ligation. Further characterisation of the factors that regulate cholangiocyte proliferation and function will help in elucidating the mechanisms regulating the pathogenesis of biliary tract diseases in humans and in devising new treatment approaches for these devastating diseases.


Assuntos
Ductos Biliares/patologia , Colestase Extra-Hepática/patologia , Animais , Ductos Biliares/cirurgia , Proliferação de Células , Células Epiteliais/patologia , Humanos , Ligadura
8.
J Cell Death ; 3: 13-21, 2010 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-22924014

RESUMO

Bile duct damage is present in virtually all cholangiopathies, which share the biliary epithelial cells (i.e. cholangiocytes) as a common pathogenic target. Cholangiocyte cell death largely occurs through the process of apoptosis. In this review, we will summarize the mechanisms through which biliary damage occurs in a variety of animal and in vitro models, such as extrahepatic cholestasis induced by bile duct ligation (BDL), cytotoxin- and hepatotoxin-induced liver injury, and biliary atresia. Although we have increased our knowledge of the factors that regulate cholangiocyte cell death mechanisms during cholangiopathies, especially in experimental models, there is still a lack of effective treatment modalities for these biliary disorders. However, future studies will hopefully provide for new therapeutic modalities for the prevention or restoration of biliary mass and function lost during the progression of cholangiopathies.

9.
Int J Cancer ; 127(1): 43-54, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19904746

RESUMO

Secretin plays a key role in the regulation of normal cholangiocyte physiology via secretin receptor (SCTR). SCTR expression is upregulated during extrahepatic cholestasis induced by bile duct ligation and closely associated with cholangiocyte proliferative responses. Although well studied in normal cholangiocytes, the role of secretin and the expression of SCTR in the regulation of cholangiocarcinoma proliferation are unknown. In vitro, secretin (10(-7) M) displayed differential effects on normal cholangiocyte [H-69 and human intrahepatic biliary epithelial cell line (HIBEpiC)] and cholangiocarcinoma (Mz-ChA-1, HuH-28, TFK-1, SG231, CCLP1 and HuCC-T1) cell lines as such secretin is mitogenic for normal cholangiocytes and antiproliferative for cholangiocarcinoma. As expected in normal cholangiocytes (HIBEpiC), secretin increased intracellular cyclic adenosine monophosphate (cAMP) levels. However, the effect of secretin on intracellular cAMP levels was suppressed in Mz-ChA-1 cells. Secretin-stimulated intracellular cAMP levels in Mz-ChA-1 were restored by pretreatment with pertussis toxin, suggesting that the receptor coupled to Galpha(i) rather than Galpha(s). SCTR expression was found to be downregulated in 4 of the 6 cholangiocarcinoma cell lines evaluated and in human cholangiocarcinoma biopsy samples. In vivo, secretin significantly inhibited the tumor size and more than doubled tumor latency, which was associated with a decrease in proliferating cell nuclear antigen and an increase in cleaved-caspase 3 expression levels. Our results demonstrate that secretin and/or the modulation of SCTR expression might have potential as a therapeutic tool in the treatment of cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , AMP Cíclico/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/fisiologia , Transdução de Sinais/fisiologia , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Citometria de Fluxo , Imunofluorescência , Humanos , Reação em Cadeia da Polimerase
10.
World J Gastrointest Pathophysiol ; 1(2): 30-7, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21607140

RESUMO

Cholangiocytes are the epithelial cells that line the biliary tree. In the adult liver, they are a mitotically dormant cell population, unless ductular reaction is triggered by injury. The ability of cholangiocytes to proliferate is important in many different human pathological liver conditions that target this cell type, which are termed cholangiopathies (i.e. primary biliary cirrhosis, primary sclerosing cholangitis and biliary atresia). In our article, we provide background information on the morphological and functional heterogeneity of cholangiocytes, summarize what is currently known about their proliferative processes, and briefly describe the diseases that target these cells. In addition, we address recent findings that suggest cholangiocyte involvement in epithelial-to-mesenchymal transformation and liver fibrosis, and propose directions for future studies.

11.
Am J Physiol Gastrointest Liver Physiol ; 295(1): G124-G136, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18511743

RESUMO

During cholestatic liver diseases, cholangiocytes express neuroendocrine phenotypes and respond to a number of hormones and neuropeptides by paracrine and autocrine mechanisms. We examined whether the neuroendocrine hormone progesterone is produced by and targeted to cholangiocytes, thereby regulating biliary proliferation during cholestasis. Nuclear (PR-A and PR-B) and membrane (PRGMC1, PRGMC2, and mPRalpha) progesterone receptor expression was evaluated in liver sections and cholangiocytes from normal and bile duct ligation (BDL) rats, and NRC cells (normal rat cholangiocyte line). In vivo, normal rats were chronically treated with progesterone for 1 wk, or immediately after BDL, rats were treated with a neutralizing progesterone antibody for 1 wk. Cholangiocyte growth was measured by evaluating the number of bile ducts in liver sections. The expression of the progesterone synthesis pathway was evaluated in liver sections, cholangiocytes and NRC. Progesterone secretion was evaluated in supernatants from normal and BDL cholangiocytes and NRC. In vitro, NRC were stimulated with progesterone and cholangiocyte supernatants in the presence or absence of antiprogesterone antibody. Aminoglutethimide was used to block progesterone synthesis. Cholangiocytes and NRC express the PR-B nuclear receptor and PRGMC1, PRGMC2, and mPRalpha. In vivo, progesterone increased the number of bile ducts of normal rats, whereas antiprogesterone antibody inhibited cholangiocyte growth stimulated by BDL. Normal and BDL cholangiocytes expressed the biosynthetic pathway for and secrete progesterone. In vitro, 1) progesterone increased NRC proliferation; 2) cholangiocyte supernatants increased NRC proliferation, which was partially inhibited by preincubation with antiprogesterone; and 3) inhibition of progesterone steroidogenesis prevented NRC proliferation. In conclusion, progesterone may be an important autocrine/paracrine regulator of cholangiocyte proliferation.


Assuntos
Comunicação Autócrina/fisiologia , Ductos Biliares/citologia , Ductos Biliares/efeitos dos fármacos , Comunicação Parácrina/fisiologia , Progesterona/farmacologia , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Caracteres Sexuais
12.
World J Gastroenterol ; 14(19): 2986-9, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18494047

RESUMO

Cholangiocarcinoma is a rare cancer originating from the neoplastic transformation of the epithelial cells (i.e. cholangiocytes) that line the biliary tract. The prognosis for patients with cholangiocarcinoma is grim due to lack of viable treatment options. The increase in world-wide incidence and mortality from cholangiocarcinoma highlights the importance of understanding the intracellular mechanisms that trigger the neoplastic transformation of cholangiocytes and the growth of biliary cancers. The purpose of the following review is to address what has been learned over the past decade concerning the molecular basis of cholangiocarcinogenesis. The material presented is divided into two sections: (1) mechanisms regulating neoplastic transformation of cholangiocytes; and (2) factors regulating cholangiocarcinoma growth. An understanding of the growth regulatory mechanisms of cholangiocarcinoma will lead to the identification of therapeutic targets for this devastating cancer.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Proliferação de Células , Transformação Celular Neoplásica/patologia , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Transformação Celular Neoplásica/metabolismo , Colangiocarcinoma/etiologia , Colangiocarcinoma/metabolismo , Humanos , Fatores de Risco , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA