Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2307627, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704690

RESUMO

Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.

2.
Adv Mater ; : e2311313, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483292

RESUMO

Conventional gas plasma treatments are crucial for functionalizing materials in biomedical applications, but have limitations hindering their broader use. These methods require exposure to reactive media under vacuum conditions, rendering them unsuitable for substrates that demand aqueous environments, such as proteins and hydrogels. In addition, complex geometries are difficult to treat, necessitating extensive customization for each material and shape. To address these constraints, an innovative approach employing plasma polymer nanoparticles (PPN) as a versatile functionalization tool is proposed. PPN share similarities with traditional plasma polymer coatings (PPC) but offer unique advantages: compatibility with aqueous systems, the ability to modify complex geometries, and availability as off-the-shelf products. Robust immobilization of PPN on various substrates, including synthetic polymers, proteins, and complex hydrogel structures is demonstrated in this study. This results in substantial improvements in surface hydrophilicity. Materials functionalization with arginylglycylaspartic acid (RGD)-loaded PPN significantly enhances cell attachment, spreading, and substrate coverage on inert scaffolds compared to passive RGD coatings. Improved adhesion to complex geometries and subsequent differentiation following growth factor exposure is also demonstrated. This research introduces a novel substrate functionalization approach that mimics the outcomes of plasma coating technology but vastly expands its applicability, promising advancements in biomedical materials and devices.

3.
Front Immunol ; 15: 1281121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312834

RESUMO

Hepatocellular carcinoma (HCC) has garnered considerable attention due to its morbidity and mortality. Although the precise mechanisms underlying HCC tumorigenesis remain to be elucidated, evidence suggests that host immunity plays a pivotal role in its development. IL-36 and IL-37 are important immunoregulatory cytokines classified as pro-inflammatory and anti-inflammatory respectively. In the context of HCC, the downregulation of intrahepatic IL-36 is inversely correlated with cirrhosis, but positively correlated with 5-year survival rates, suggesting that IL-36 offers protection during HCC development. However, IL-36 may lose its hepatoprotective effects as the disease progresses to HCC in the context of dysregulated immunity in cirrhotic patients. Substantially increased circulating IL-36 in HCC patients is likely a systemic response to HCC stimulation, but is insufficient to suppress progression towards HCC. Intrahepatic IL-37 is suppressed in HCC patients, consistent with the inverse correlation between intrahepatic IL-37 and the level of AFP in HCC patients, suggesting IL-37 exerts hepatoprotection. There is no significant difference in IL-37 among differentiations of HCC or with respect to clinical BCLC stages or cirrhosis status in HCC patients. However, IL-37 protection is demonstrated in an IL-37 transfected HCC animal model, showing significantly reduced tumour size. IL-36/37 may inhibit HCC by enhancing M1 tumour-associated macrophages while not affecting M2 macrophages. The interplay between IL-36 (pro-inflammatory) and IL-37 (anti-inflammatory) is emerging as a crucial factor in host protection against the development of HCC. Further research is needed to investigate the complex mechanisms involved and the therapeutic potential of targeting these cytokines in HCC management.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Citocinas/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
4.
Trends Biotechnol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320911

RESUMO

Microcarrier expansion systems show exciting potential to revolutionise mesenchymal stromal cell (MSC)-based clinical therapies by providing an opportunity for economical large-scale expansion of donor- and patient-derived cells. The poor reproducibility and efficiency of cell expansion on commercial polystyrene microcarriers have driven the development of novel microcarriers with tuneable physical, mechanical, and cell-instructive properties. These new microcarriers show innovation toward improving cell expansion outcomes, although their limited biological characterisation and compatibility with dynamic culture systems suggest the need to realign the microcarrier design pathway. Clear headway has been made toward developing infrastructure necessary for scaling up these technologies; however, key challenges remain in characterising the wholistic effects of microcarrier properties on the biological fate and function of expanded MSCs.

5.
Mater Today Bio ; 25: 101004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420142

RESUMO

Extracellular matrix (ECM) stiffening is a common occurrence during the progression of many diseases, such as breast cancer. To accurately mimic the pathophysiological context of disease within 3D in vitro models, there is high demand for smart biomaterials which replicate the dynamic and temporal mechanical cues of diseased states. This study describes a preclinical disease model, using breast cancer as an example, which replicates the dynamic plasticity of the tumour microenvironment by incorporating temporal (3-week progression) biomechanical cues within a tissue-specific hydrogel microenvironment. The composite hydrogel formulation, integrating adipose-derived decellularised ECM (AdECM) and silk fibroin, was initially crosslinked using a visible light-mediated system, and then progressively stiffened through spontaneous secondary structure interactions inherent between the polymer chains (∼10-15 kPa increase, with a final stiffness of 25 kPa). When encapsulated and cultured in vitro, MCF-7 breast cancer cells initially formed numerous, large spheroids (>1000 µm2 in area), however, with progressive temporal stiffening, cells demonstrated growth arrest and underwent phenotypic changes resulting in intratumoral heterogeneity. Unlike widely-investigated static mechanical models, this stiffening hydrogel allowed for progressive phenotypic changes to be observed, and fostered the development of mature organoid-like spheroids, which mimicked both the organisation and acinar-structures of mature breast epithelium. The spheroids contained a central population of cells which expressed aggressive cellular programs, evidenced by increased fibronectin expression and reduction of E-cadherin. The phenotypic heterogeneity observed using this model is more reflective of physiological tumours, demonstrating the importance of establishing temporal cues within preclinical models in future work. Overall, the developed model demonstrated a novel strategy to uncouple ECM biomechanical properties from the cellular complexities of the disease microenvironment and offers the potential for wide applicability in other 3D in vitro disease models through addition of tissue-specific dECM materials.

6.
Trends Biotechnol ; 42(3): 369-381, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37852854

RESUMO

The performance of synthetic biomaterial vascular grafts for the bypass of stenotic and dysfunctional blood vessels remains an intractable challenge in small-diameter applications. The functionalization of biomaterials with extracellular matrix (ECM) molecules is a promising approach because these molecules can regulate multiple biological processes in vascular tissues. In this review, we critically examine emerging approaches to ECM-containing vascular graft biomaterials and explore opportunities for future research and development toward clinical use.


Assuntos
Materiais Biocompatíveis , Biomimética , Prótese Vascular , Matriz Extracelular , Engenharia Tecidual
7.
Adv Healthc Mater ; 12(32): e2301571, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846971

RESUMO

Medical devices are a mainstay of the healthcare industry, providing clinicians with innovative tools to diagnose, monitor, and treat a range of medical conditions. For implantable devices, it is widely regarded that chronic inflammation during the foreign body response (FBR) is detrimental to device performance, but also required for tissue regeneration and host integration. Current strategies to mitigate the FBR rely on broad acting anti-inflammatory drugs, most commonly, dexamethasone (DEX), which can inhibit angiogenesis and compromise long-term device function. This study challenges prevailing assumptions by suggesting that FBR inflammation is multifaceted, and selectively targeting its individual pathways can stop implant fibrosis while preserving beneficial repair pathways linked to improved device performance. MCC950, an anti-inflammatory drug that selectively inhibits the NLRP3 inflammasome, targets pathological inflammation without compromising global immune function. The effects of MCC950 and DEX on the FBR are compared using implanted polycaprolactone (PCL) scaffolds. The results demonstrate that both DEX and MCC950 halt immune cell recruitment and cytokine release, leading to reduced FBR. However, MCC950 achieves this while supporting capillary growth and enhancing tissue angiogenesis. These findings support selective immunosuppression approaches as a potential future direction for treating the FBR and enhancing the longevity and safety of implantable devices.


Assuntos
Corpos Estranhos , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Materiais Biocompatíveis/farmacologia , Angiogênese , Inflamação/tratamento farmacológico , Inflamação/patologia , Sulfonamidas , Anti-Inflamatórios , Terapia de Imunossupressão
8.
Gels ; 9(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37754449

RESUMO

The periosteum is a thin layer of connective tissue covering bone. It is an essential component for bone development and fracture healing. There has been considerable research exploring the application of the periosteum in bone regeneration since the 19th century. An increasing number of studies are focusing on periosteal progenitor cells found within the periosteum and the use of hydrogels as scaffold materials for periosteum engineering and guided bone development. Here, we provide an overview of the research investigating the use of the periosteum for bone repair, with consideration given to the anatomy and function of the periosteum, the importance of the cambium layer, the culture of periosteal progenitor cells, periosteum-induced ossification, periosteal perfusion, periosteum engineering, scaffold vascularization, and hydrogel-based synthetic periostea.

9.
Nanomaterials (Basel) ; 13(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630945

RESUMO

MicroRNAs (miRNAs) are increasingly recognised as key regulators of the development and progression of many diseases due to their ability to modulate gene expression post-translationally. While this makes them an attractive therapeutic target, clinical application of miRNA therapy remains at an early stage and in part is limited by the lack of effective delivery modalities. Here, we determined the feasibility of delivering miRNA using a new class of plasma-polymerised nanoparticles (PPNs), which we have recently isolated and characterised. We showed that PPN-miRNAs have no significant effect on endothelial cell viability in vitro in either normal media or in the presence of high-glucose conditions. Delivery of a miRNA inhibitor targeting miR-503 suppressed glucose-induced miR-503 upregulation and restored the downstream mRNA expression of CCNE1 and CDC25a in endothelial cells. Subsequently, PPN delivery of miR-503 inhibitors enhanced endothelial angiogenesis, including tubulogenesis and migration, in culture conditions that mimic diabetic ischemia. An intramuscular injection of a PPN-miR-503 inhibitor promoted blood-perfusion recovery in the hindlimb of diabetic mice following surgically induced ischemia, linked with an increase in new blood vessel formation. Together, this study demonstrates the effective use of PPN to deliver therapeutic miRNAs in the context of diabetes.

10.
PLoS One ; 18(8): e0290342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590291

RESUMO

Models of arterial injury in rodents have been invaluable to our current understanding of vessel restenosis and play a continuing role in the development of endovascular interventions for cardiovascular disease. Mechanical distention of the vessel wall and denudation of the vessel endothelium are the two major modes of vessel injury observed in most clinical pathologies and are critical to the reproducible modelling of progressive neointimal hyperplasia. The current models which have dominated this research area are the mouse wire carotid or femoral injury and the rat carotid balloon injury. While these elicit simultaneous distension of the vessel wall and denudation of the luminal endothelium, each model carries limitations that need to be addressed using a complementary injury model. Wire injuries in mice are highly technical and procedurally challenging due to small vessel diameters, while rat balloon injuries require permanent blood vessel ligation and disruption of native blood flow. Complementary models of vascular injury with reproducibility, convenience, and increased physiological relevance to the pathophysiology of endovascular injury would allow for improved studies of neointimal hyperplasia in both basic and translational research. In this study, we developed a new surgical model that elicits vessel distention and endothelial denudation injury using sequential steps using microforceps and a standard needle catheter inserted via arteriotomy into a rat common carotid artery, without requiring permanent ligation of branching arteries. After 2 weeks post-injury this model elicits highly reproducible neointimal hyperplasia and rates of re-endothelialisation similar to current wire and balloon injury models. Furthermore, evaluation of the smooth muscle cell phenotype profile, inflammatory response and extracellular matrix within the developing neointima, showed that our model replicated the vessel remodelling outcomes critical to restenosis and those becoming increasingly focused upon in the development of new anti-restenosis therapies.


Assuntos
Lesões do Sistema Vascular , Ratos , Camundongos , Animais , Lesões do Sistema Vascular/etiologia , Hiperplasia , Neointima , Reprodutibilidade dos Testes , Artéria Carótida Primitiva , Constrição Patológica
11.
Front Bioeng Biotechnol ; 11: 1127996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409168

RESUMO

Introduction: Heart failure due to myocardial infarction is a progressive and debilitating condition, affecting millions worldwide. Novel treatment strategies are desperately needed to minimise cardiomyocyte damage after myocardial infarction and to promote repair and regeneration of the injured heart muscle. Plasma polymerized nanoparticles (PPN) are a new class of nanocarriers which allow for a facile, one-step functionalization with molecular cargo. Methods: Here, we conjugated platelet-derived growth factor AB (PDGF-AB) to PPN, engineering a stable nano-formulation, as demonstrated by optimal hydrodynamic parameters, including hydrodynamic size distribution, polydisperse index (PDI) and zeta potential, and further demonstrated safety and bioactivity in vitro and in vivo. We delivered PPN-PDGF-AB to human cardiac cells and directly to the injured rodent heart. Results: We found no evidence of cytotoxicity after delivery of PPN or PPN-PDGFAB to cardiomyocytes in vitro, as determined through viability and mitochondrial membrane potential assays. We then measured contractile amplitude of human stem cell derived cardiomyocytes and found no detrimental effect of PPN on cardiomyocyte contractility. We also confirmed that PDGF-AB remains functional when bound to PPN, with PDGF receptor alpha positive human coronary artery vascular smooth muscle cells and cardiac fibroblasts demonstrating migratory and phenotypic responses to PPN-PDGF-AB in the same manner as to unbound PDGF-AB. In our rodent model of PPN-PDGF-AB treatment after myocardial infarction, we found a modest improvement in cardiac function in PPN-PDGF-AB treated hearts compared to those treated with PPN, although this was not accompanied by changes in infarct scar size, scar composition, or border zone vessel density. Discussion: These results demonstrate safety and feasibility of the PPN platform for delivery of therapeutics directly to the myocardium. Future work will optimize PPN-PDGF-AB formulations for systemic delivery, including effective dosage and timing to enhance efficacy and bioavailability, and ultimately improve the therapeutic benefits of PDGF-AB in the treatment of heart failure cause by myocardial infarction.

12.
Cells ; 12(13)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443758

RESUMO

Periosteum is a highly vascularized membrane lining the surface of bones. It plays essential roles in bone repair following injury and reconstruction following invasive surgeries. To broaden the use of periosteum, including for augmenting in vitro bone engineering and/or in vivo bone repair, we have developed an ex vivo perfusion bioreactor system to maintain the cellular viability and metabolism of surgically resected periosteal flaps. Each specimen was placed in a 3D printed bioreactor connected to a peristaltic pump designed for the optimal flow rates of tissue perfusate. Nutrients and oxygen were perfused via the periosteal arteries to mimic physiological conditions. Biochemical assays and histological staining indicate component cell viability after perfusion for almost 4 weeks. Our work provides the proof-of-concept of ex vivo periosteum perfusion for long-term tissue preservation, paving the way for innovative bone engineering approaches that use autotransplanted periosteum to enhance in vivo bone repair.


Assuntos
Periósteo , Engenharia Tecidual , Ovinos , Animais , Periósteo/irrigação sanguínea , Periósteo/transplante , Retalhos Cirúrgicos , Perfusão , Reatores Biológicos
13.
Adv Sci (Weinh) ; 10(20): e2300521, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150865

RESUMO

Minimally invasive interventions using drug-eluting stents or balloons are a first-line treatment for certain occlusive cardiovascular diseases, but the major long-term cause of failure is neointimal hyperplasia (NIH). The drugs eluted from these devices are non-specific anti-proliferative drugs, such as paclitaxel (PTX) or sirolimus (SMS), which do not address the underlying inflammation. MCC950 is a selective inhibitor of the NLRP3-inflammasome, which drives sterile inflammation commonly observed in NIH. Additionally, in contrast to broad-spectrum anti-inflammatory drugs, MCC950 does not compromise global immune function due this selective activity. In this study, MCC950 is found to not impact the viability, integrity, or function of human coronary endothelial cells, in contrast to the non-specific anti-proliferative effects of PTX and SMS. Using an in vitro model of NLRP3-mediated inflammation in murine macrophages, MCC950 reduced IL-1ß expression, which is a key driver of NIH. In an in vivo mouse model of NIH in vascular grafts, MCC950 significantly enhanced re-endothelialization and reduced NIH compared to PTX or SMS. These findings show the effectiveness of a targeted anti-inflammatory drug-elution strategy with significant implications for cardiovascular device intervention.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Anti-Inflamatórios/uso terapêutico , Células Endoteliais/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonas/farmacologia , Sulfonas/uso terapêutico
14.
ACS Biomater Sci Eng ; 9(6): 3320-3334, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37219536

RESUMO

Biomimetic scaffolds recreating key elements of the architecture and biological activity of the extracellular matrix have enormous potential for soft tissue engineering applications. Combining appropriate mechanical properties with select biological cues presents a challenge for bioengineering, as natural materials are most bioactive but can lack mechanical integrity, while synthetic polymers have strength but are often biologically inert. Blends of synthetic and natural materials, aiming to combine the benefits of each, have shown promise but inherently require a compromise, diluting down favorable properties in each polymer to accommodate the other. Here, we electrospun a material comprising chitosan, a natural polysaccharide, and polycaprolactone (PCL), one of the most widely studied synthetic polymers used in materials engineering. In contrast to a classical blend, here PCL was chemically grafted onto the chitosan backbone to create chitosan-graft-polycaprolactone (CS-g-PCL) and then combined further with unmodified PCL to generate scaffolds with discreet chitosan functionalization. These small amounts of chitosan led to significant changes in scaffold architecture and surface chemistry, reducing the fiber diameter, pore size, and hydrophobicity. Interestingly, all CS-g-PCL-containing blends were stronger than control PCL, though with reduced elongation. In in vitro assessments, increasing the CS-g-PCL content led to significant improvements in in vitro blood compatibility compared to PCL alone while increasing fibroblast attachment and proliferation. In a mouse subcutaneous implantation model, a higher CS-g-PCL content improved the immune response to the implants. Macrophages in tissues surrounding CS-g-PCL scaffolds decreased proportionately to the chitosan content by up to 65%, with a corresponding decrease in pro-inflammatory cytokines. These results suggest that CS-g-PCL is a promising hybrid material comprising natural and synthetic polymers with tailorable mechanical and biological properties, justifying further development and in vivo evaluation.


Assuntos
Quitosana , Camundongos , Animais , Quitosana/farmacologia , Alicerces Teciduais/química , Polímeros/química , Imunidade
15.
ACS Appl Mater Interfaces ; 15(2): 2590-2601, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36607242

RESUMO

Barrier membranes for guided tissue regeneration are essential for bone repair and regeneration. The implanted membranes may trigger early inflammatory responses as a foreign material, which can affect the recruitment and differentiation of bone cells during tissue regeneration. The purpose of this study was to determine whether immobilizing interleukin 4 (IL4) on plasma immersion ion implantation (PIII)-activated surfaces may alter the osteo-immunoregulatory characteristics of the membranes and produce pro-osteogenic effects. In order to immobilize IL4, polycaprolactone surfaces were modified using the PIII technology. No discernible alterations were found between the morphology before and after PIII treatment or IL4 immobilization. IL4-immobilized PIII surfaces polarized macrophages to an M2 phenotype and mitigated inflammatory cytokine production under lipopolysaccharide stimulation. Interestingly, the co-culture of macrophages (on IL4-immobilized PIII surfaces) and bone marrow-derived mesenchymal stromal cells enhanced the production of angiogenic and osteogenic factors and triggered autophagy activation. Exosomes produced by PIII + IL4-stimulated macrophages were also found to play a role in osteoblast differentiation. In conclusion, the osteo-immunoregulatory properties of bone materials can be modified by PIII-assisted IL4 immobilization, creating a favorable osteoimmune milieu for bone regeneration.


Assuntos
Regeneração Tecidual Guiada , Interleucina-4 , Regeneração Óssea/fisiologia , Interleucina-4/química , Interleucina-4/farmacologia , Osteogênese/fisiologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Membranas Artificiais , Regeneração Tecidual Guiada/métodos
16.
Tissue Eng Part B Rev ; 29(3): 232-243, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36274223

RESUMO

In vitro models of the vasculature play an important role in biomedical discovery research, with diverse applications in vascular biology, drug discovery, and tissue engineering. These models aim to replicate the conditions of the human vasculature including physical geometry, employing appropriate vascular cells exposed to physiological forces. However, vessel biology is complex, with multiple relevant cell types, precise three-dimensional (3D) architectural arrangement, an array of biological cues and pressure, flow rate, and shear stress stimulation that are difficult to replicate outside of the body. Vessel bioreactors typically comprise core modules, common to most systems: a 3D tubular scaffold to support cells, media and nutrient exchange for cell viability, a pumping module, and sensor arrays for monitoring. In our comprehensive review of the literature, foundational elements such as maintenance of cell viability, nutrient exchange with flow, use of 3D scaffolds, and basic sensing capabilities are well established. However, most bioreactor systems fail to adequately replicate combinations of physiologically relevant stimuli-including pressure, shear stress, and flow rate-independently, as system input parameters. At the root of this deficiency is the field's reliance on simple pumping systems designed for other applications, making it necessary to add resistors and compliance chambers to even approach human vascular conditions. As vascular biology research rapidly progressed it became increasingly clear that combinations of physical forces strongly influence cell phenotype, gene expression, and in turn can be drivers of pathology. We highlight the need for renewed innovation in vascular bioreactor development with a focus on the importance of providing appropriate physiological forces in the same system. Impact statement In vitro systems modeling aspects of the human vasculature are increasingly important in tissue engineering and biomedical research. Current systems maintain basic cell viability and facilitate nutrient exchange but poorly replicate physiological forces, reliant on simplistic pumping systems. Our review highlights the need to more accurately mimic arterial pressure, flow rate, and shear stress in the same system. Innovation in this area would improve in vitro modeling of the vasculature, significantly impacting tissue engineering and vascular biology in this area.


Assuntos
Reatores Biológicos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Estresse Mecânico , Alicerces Teciduais
17.
Front Med (Lausanne) ; 9: 1051113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438052

RESUMO

Hepatocellular carcinoma (HCC) remains a major challenge to clinicians due to its unacceptably high mortality and morbidity. The etiology of HCC is multi-faceted, including viral infection, alcoholism and non-alcoholic fatty liver disease. Dysregulated host immunity contributes to tumorigenesis among these susceptible individuals with pre-existing condition(s). IL-32 and IL-34 are key cytokines driving the development of chronic inflammatory conditions such as rheumatoid arthritis, systemic lupus erythematosus, as well as chronic liver diseases. IL-32 and IL-34 play an important role augmenting the development of HCC, due to their direct influence over host inflammation, however, new roles for these cytokines in HCC are emerging. Here we comprehensively review the latest research for IL-32 and IL-34 in HCC, identifying a subset of potential therapeutic targets for use in precision medicine.

18.
Front Immunol ; 13: 1051787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405715

RESUMO

IL-38, an anti-inflammatory cytokine, is a key regulator of homeostasis in host immunity. Intestinal immunity plays a critical role in defence against pathogenic invasion, as it is the largest surface organ and the most common entry point for micro-organisms. Dysregulated IL-38 activity is observed in several autoimmune diseases including systemic lupus erythematosus and atherosclerosis. The protective role of IL-38 is well illustrated in experimental colitis models, showing significantly worse colitis in IL-38 deficient mice, compared to wildtype mice. Moreover, exogenous IL-38 has been shown to ameliorate experimental colitis. Surprisingly, upregulated IL-38 is detected in inflamed tissue from inflammatory bowel disease patients, consistent with increased circulating cytokine levels, demonstrating the complex nature of host immunity in vivo. However, colonic IL-38 is significantly reduced in malignant tissues from patients with colorectal cancer (CRC), compared to adjacent non-cancerous tissue. Additionally, IL-38 expression in CRC correlates with 5-year survival, tumour size and differentiation, suggesting IL-38 plays a protective role during the development of CRC. IL-38 is also an independent biomarker for the prognosis of CRC, offering useful information in the management of CRC. Taken together, these data demonstrate the role of IL-38 in the maintenance of normal intestinal mucosal homeostasis, but that dysregulation of IL-38 contributes to initiation of chronic inflammatory bowel disease (resulting from persistent local inflammation), and that IL-38 provides protection during the development of colorectal cancer. Such data provide useful information for the development of novel therapeutic targets in the management of intestinal diseases for more precise medicine.


Assuntos
Colite , Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Camundongos , Animais , Citocinas , Neoplasias Colorretais/patologia
19.
World J Gastrointest Oncol ; 14(9): 1808-1822, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36187404

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common malignancies in China with a high morbidity and mortality. AIM: To determine whether interleukin (IL)-31, IL-32, and IL-33 can be used as biomarkers for the detection of GC, via evaluating the correlations between their expression and clinicopathological parameters of GC patients. METHODS: Tissue array (n = 180) gastric specimens were utilised. IL-31, IL-32, and IL-33 expression in GC and non-GC tissues was detected immunohistochemically. The correlations between IL-31, IL-32, and IL-33 expression in GC and severity of clinicopathological parameters were evaluated. Survival curves were plotted using the Kaplan-Meier method/Cox regression. Circulating IL-31, IL-32, and IL-33 were detected by ELISA. RESULTS: We found that the expression levels of IL-31, IL-32, and IL-33 were all lower in GC than in adjacent non-GC gastric tissues (P < 0.05). IL-33 in peripheral blood of GC patients was significantly lower than that of healthy individuals (1.50 ± 1.11 vs 9.61 ± 8.00 ng/mL, P <0.05). Decreased IL-31, IL-32, and IL-33 in GC were observed in younger patients (< 60 years), and IL-32 and IL-33 were lower in female patients (P < 0.05). Higher IL-32 correlated with a longer survival in two GC subgroups: T4 invasion depth and TNM I-II stage. Univariate/multivariate analysis revealed that IL-32 was an independent prognostic factor for GC in the T4 stage subgroup. Circulating IL-33 was significantly lower in GC patients at TNM stage IV than in healthy people (P < 0.05). CONCLUSION: Our findings may provide new insights into the roles of IL-31, IL-32, and IL-33 in the carcinogenesis of GC and demonstrate their relative usefulness as prognostic markers for GC. The underlying mechanism of IL-31, IL-32, and IL-33 actions in GC should be further explored.

20.
Microvasc Res ; 143: 104396, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644243

RESUMO

Endothelial dysfunction, hallmarked by an imbalance between vasoconstriction and vasorelaxation, is associated with diabetes. Thioredoxin Interacting protein (TXNIP), controlled by an exquisitely glucose sensitive gene, is increasingly recognized for its role in diabetes. However, the role of TXNIP in modulating diabetes-related endothelial dysfunction remains unclear. To elucidate the role of TXNIP, we generated two novel mouse strains; endothelial-specific TXNIP knockout (EKO) and a Tet-O inducible, endothelial-specific TXNIP overexpression (EKI). Hyperglycemia was induced by streptozotocin (STZ) treatment in floxed control (fl/fl) and EKO mice. Doxycycline (DOX) was given to EKI mice to induce endothelial TXNIP overexpression. The ablation of endothelial TXNIP improved glucose tolerance in EKO mice. Acetylcholine-induced, endothelium-dependent vasorelaxation was impaired in STZ-treated fl/fl mice while this STZ impaired vasorelaxation was attenuated in EKO mice. Hyperglycemia induction of NLRP3 and reductions in Akt and eNOS phosphorylation were also mitigated in EKO mice. Overexpression of endothelial TXNIP did not impair glucose tolerance in DOX-treated EKI mice, however induction of endothelial TXNIP led to impaired vasorelaxation in EKI mice. This was associated with increased NLRP3 and reduced Akt and eNOS activation. In conclusion, deletion of endothelial TXNIP is protective against and overexpression of endothelial TXNIP induces endothelial dysfunction; thus, endothelial TXNIP plays a critical role in modulating endothelial dysfunction.


Assuntos
Endotélio , Hiperglicemia , Tiorredoxinas , Vasodilatação , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Endotélio/metabolismo , Endotélio/fisiopatologia , Glucose , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estreptozocina , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Vasodilatação/genética , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...