Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Environ Toxicol Chem ; 43(4): 762-771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088253

RESUMO

Benzotriazole ultraviolet (UV) stabilizers (BUVSs) are used in great quantities during industrial production of a variety of consumer and industrial goods. As a result of leaching and spill, BUVSs are detectable ubiquitously in the environment. As of May 2023, citing concerns related to bioaccumulation, biomagnification, and environmental persistence, (B)UV(S)-328 was recommended to be listed under Annex A of the Stockholm Convention on Persistent Organic Pollutants. However, a phaseout of UV-328 could result in a regrettable substitution because the replacement chemical(s) could cause similar or unpredicted toxicity in vivo, relative to UV-328. Therefore, the influence of UV-327, a potential replacement of UV-328, was investigated with respect to early life development of newly fertilized rainbow trout embryos (Oncorhynchus mykiss), microinjected with environmentally relevant concentrations of UV-327. Developmental parameters (standard length), energy consumption (yolk area), heart function, blue sac disease, mortality, and behavior were investigated. Alevins at 14 days posthatching, exposed to 107 ng UV-327 g-1 egg, presented significant signs of hyperactivity; they moved on average 1.8-fold the distance and at 1.5-fold the velocity of controls. Although a substantial reduction in body burden of UV-327 was observed at hatching, it is postulated that UV-327, due to its lipophilic properties, interfered with neurological development and signaling from the onset of neurogenesis. If these results hold true across multiple taxa and species, a potential contributor to neurodevelopmental disorders might have been identified. These findings suggest that UV-327 poses an unknown hazard to rainbow trout embryos and alevins, rendering UV-327 a potential regrettable substitution to UV-328. However, a qualified statement on a regrettable substitution requires a comparative investigation on the teratogenic effects between the two BUVSs. Environ Toxicol Chem 2024;43:762-771. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Oncorhynchus mykiss , Animais , Triazóis/toxicidade
2.
Environ Toxicol Chem ; 43(2): 385-397, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975561

RESUMO

Benzotriazole ultraviolet stabilizers (BUVSs) are emerging contaminants of concern. They are added to a variety of products, including building materials, personal care products, paints, and plastics, to prevent degradation caused by ultraviolet (UV) light. Despite widespread occurrence in aquatic environments, little is known regarding the effects of BUVSs on aquatic organisms. The aim of the present study was to characterize the effects of exposure to 2-(2H-benzotriazol-2-yl)-4-methylphenol (UV-P) on the reproductive success of zebrafish (Danio rerio) following embryonic exposure. Embryos were exposed, by use of microinjection, to UV-P at <1.5 (control), 2.77, and 24.25 ng/g egg, and reared until sexual maturity, when reproductive performance was assessed, following which molecular and biochemical endpoints were analyzed. Exposure to UV-P did not have a significant effect on fecundity. However, there was a significant effect on fertilization success. Using UV-P-exposed males and females, fertility was decreased by 8.75% in the low treatment group and by 15.02% in the high treatment group relative to control. In a reproduction assay with UV-P-exposed males and control females, fertility was decreased by 11.47% in the high treatment group relative to the control. Embryonic exposure to UV-P might have perturbed male sex steroid synthesis as indicated by small changes in blood plasma concentrations of 17ß-estradiol and 11-ketotestosterone, and small statistically nonsignificant decreases in mRNA abundances of cyp19a1a, cyp11c1, and hsd17b3. In addition, decreased transcript abundances of genes involved in spermatogenesis, such as nanos2 and dazl, were observed. Decreases in later stages of sperm development were observed, suggesting that embryonic exposure to UV-P impaired spematogenesis, resulting in decreased sperm quantity. The present study is the first to demonstrate latent effects of BUVSs, specifically on fish reproduction. Environ Toxicol Chem 2024;43:385-397. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cresóis , Triazóis , Poluentes Químicos da Água , Peixe-Zebra , Animais , Feminino , Masculino , Sêmen , Reprodução , Fertilidade , Poluentes Químicos da Água/metabolismo
3.
Environ Sci Technol ; 58(1): 110-120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112502

RESUMO

Benzotriazole ultraviolet stabilizers (BUVSs) are chemicals used to mitigate UV-induced damage to manufactured goods. Their presence in aquatic environments and biota raises concerns, as certain BUVSs activate the aryl hydrocarbon receptor (AhR), which is linked to adverse effects in fish. However, potencies of BUVSs as AhR agonists and species sensitivities to AhR activation are poorly understood. This study evaluated the toxicity of three BUVSs using embryotoxicity assays. Zebrafish (Danio rerio) embryos exposed to BUVSs by microinjection suffered dose-dependent increases in mortality, with LD50 values of 4772, 11 608, and 56 292 ng/g-egg for UV-P, UV-9, and UV-090, respectively. The potencies and species sensitivities to AhR2 activation by BUVSs were assessed using a luciferase reporter gene assay with COS-7 cells transfected with the AhR2 of zebrafish and eight other fishes. The rank order of potency for activation of the AhR2 from all nine species was UV-P > UV-9 > UV-090. However, AhR2s among species differed in sensitivities to activation by up to 100-fold. An approximate reversed rank order of species sensitivity was observed compared to the rank order of sensitivity to 2,3,7,8-tetrachlorodibenzo[p]dioxin, the prototypical AhR agonist. Despite this, a pre-existing quantitative adverse outcome pathway linking AhR activation to embryo lethality could predict embryotoxicities of BUVSs in zebrafish.


Assuntos
Dibenzodioxinas Policloradas , Peixe-Zebra , Animais , Receptores de Hidrocarboneto Arílico/genética , Triazóis/toxicidade , Triazóis/metabolismo , Dibenzodioxinas Policloradas/toxicidade
4.
Environ Toxicol ; 39(4): 2086-2091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38100244

RESUMO

Turbidity can be a result of suspended natural particles, such as sediment, or anthropogenic particles such as microplastics. This study assessed whether Daphnia magna, a pelagic filter feeder known to ingest suspended particles, have an altered response to equally turbid environments caused by the presence of either suspended bentonite or suspended polyethylene microplastics. Compared to controls, daphnids exposed to suspended bentonite maintained their feeding efficiency and increased their digestive activity, as measured by mandibular movement, peristalsis, and expulsion, to pass bentonite through the digestive tract. The same effects were not seen in microplastic-exposed individuals, in which feeding efficiency was decreased and only peristaltic movement was increased but without a coordinated increase in expulsion, suggesting that microplastics do not have the same ability as bentonite to pass through the digestive tract. This study highlights the need to discern the identities of particulates contributing to turbid environments as different particles, even of the same size, can have different effects on filter feeders, which inherently ingest suspended particles.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Plásticos , Daphnia magna , Bentonita , Daphnia/fisiologia , Poluentes Químicos da Água/toxicidade , Polietileno , Sedimentos Geológicos
5.
Environ Sci Technol ; 57(50): 21071-21079, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38048442

RESUMO

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) is a recently identified contaminant that originates from the oxidation of the tire antidegradant 6PPD. 6PPD-Q is acutely toxic to select salmonids at environmentally relevant concentrations, while other fish species display tolerance to concentrations that surpass those measured in the environment. The reasons for these marked differences in sensitivity are presently unknown. The objective of this research was to explore potential toxicokinetic drivers of species sensitivity by characterizing biliary metabolites of 6PPD-Q in sensitive and tolerant fishes. For the first time, we identified an O-glucuronide metabolite of 6PPD-Q using high-resolution mass spectrometry. The semiquantified levels of this metabolite in tolerant species or life stages, including white sturgeon (Acipenser transmontanus), chinook salmon (Oncorhynchus tshawytscha), westslope cutthroat trout (Oncorhynchus clarkii lewisi), and nonfry life stages of Atlantic salmon (Salmo salar), were greater than those in sensitive species, including coho salmon (Oncorhynchus kisutch), brook trout (Salvelinus fontinalis), and rainbow trout (Oncorhynchus mykiss), suggesting that tolerant species might detoxify 6PPD-Q more effectively. Thus, we hypothesize that differences in species sensitivity are a result of differences in basal expression of biotransformation enzyme across various fish species. Moreover, the semiquantification of 6PPD-Q metabolites in bile extracted from wild-caught fish might be a useful biomarker of exposure to 6PPD-Q, thereby being valuable to environmental monitoring and risk assessment.


Assuntos
Benzoquinonas , Fenilenodiaminas , Salmão , Truta , Poluentes Químicos da Água , Animais , Fenilenodiaminas/análise , Fenilenodiaminas/metabolismo , Fenilenodiaminas/toxicidade , Benzoquinonas/análise , Benzoquinonas/metabolismo , Benzoquinonas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Salmão/metabolismo , Truta/metabolismo , Bile/química , Bile/metabolismo
6.
Aquat Toxicol ; 265: 106761, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980850

RESUMO

Early life-stage exposure of fishes to endocrine disrupting chemicals can induce reproductive impairment at sexual maturity. Previously, we demonstrated decreased fecundity of Japanese medaka (Oryzias latipes) exposed via maternal transfer to the novel brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO). However, that study failed to identify the causative mechanism. In other studies we have shown that decreased fecundity of adult fish exposed to dietary TBCO is likely due to impaired oocyte maturation. The goal of the present study was to determine if impaired oocyte maturation is responsible for decreased fecundity of Japanese medaka exposed as embryos to TBCO, via maternal transfer. Sexually mature fish (F0) were fed either a control diet or a low (74.7 µg/g) or high (663 µg/g) diet containing TBCO for 21 days. Eggs (F1) were collected during the final week of exposure and reared to sexual maturity at which point fecundity was assessed using a 21-day reproduction assay. Upon termination of the assay, an ex vivo oocyte maturation assay was used to determine whether maturation inducing hormone (MIH) stimulated oocyte maturation was impaired. Additionally, concentrations of 17ß -estradiol (E2) in blood plasma and expression of genes involved in vitellogenesis and oocyte maturation were quantified. The F1 generation females reared from the low or high F0 treatments experienced a 26.0 % and 56.8 % decrease in cumulative fecundity, respectively. Ex vivo MIH stimulated oocyte maturation from the low and high TBCO treatments were decreased by 23.4 % and 20.0 % respectively. There was no significant effect on concentrations of E2. Transcript abundance of vtgI was significantly decreased in a concentration dependent manner. Transcript abundance of mPRα, pgrmc1, pgrmc2, and igf3 were decreased but effects were not statistically significant. Overall, results suggest that impaired oocyte maturation causes decreased fecundity of Japanese medaka exposed to maternally deposited TBCO.


Assuntos
Retardadores de Chama , Oryzias , Poluentes Químicos da Água , Animais , Feminino , Oryzias/metabolismo , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Poluentes Químicos da Água/toxicidade , Fertilidade , Reprodução , Estradiol/metabolismo , Oócitos
7.
Bull Environ Contam Toxicol ; 111(4): 47, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740756

RESUMO

Copper nanoparticles (CuNPs) and microplastics (MPs) are two emerging contaminants of freshwater systems. Despite their co-occurrence in many water bodies, the combined effects of CuNPs and MPs on aquatic organisms are not well-investigated. In this study, primary cultures of rainbow trout hepatocytes were exposed to dissolved Cu, CuNPs, MPs, or a combination of MPs and CuNPs for 48 h, and the transcript abundances of oxidative stress-related genes were investigated. Exposure to CuNPs or dissolved Cu resulted in a significant increase in the transcript abundances of two antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD). Exposure to CuNPs also led to an upregulation in the expression of Na+/K+ ATPase alpha 1 subunit (ATP1A1). Microplastics alone or in combination with CuNPs did not have a significant effect on abundances of the target gene transcripts. Overall, our findings suggested acute exposure to CuNPs or dissolved ions may induce oxidative stress in hepatocytes, and the Cu-induced effect on target gene transcripts was not associated with MPs.


Assuntos
Nanopartículas , Oncorhynchus mykiss , Animais , Cobre/toxicidade , Microplásticos/toxicidade , Plásticos , Hepatócitos , Nanopartículas/toxicidade , Estresse Oxidativo
8.
Aquat Toxicol ; 263: 106695, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716316

RESUMO

Inhibition of oocyte maturation is an understudied mechanism by which chemical stressors can impair fecundity of female fishes. The primary objective of the present study was to develop an assay to assess oocyte maturation disruption by chemical stressors in Japanese medaka (Oryzias latipes). First, an in vitro assay to assess maturation inducing hormone (MIH)-stimulated oocyte maturation in zebrafish was validated for use with Japanese medaka. Next, using the brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), which previously was shown to decrease fecundity of Japanese medaka and inhibit oocyte maturation in zebrafish, effects on oocyte maturation were quantified using in vitro and in vivo exposure. Adaptation of the protocol for in vitro MIH-stimulated maturation of stage IV oocytes from zebrafish was successful in inducing greater than 80% of stage IX oocytes from female Japanese medaka to mature. To assess effects of in vitro exposure, stage IX oocytes were exposed to 0, 2, 20, and 200 µg/L of TBCO, followed by exposure to MIH. The in vitro exposure caused a significant decrease in maturation of oocytes exposed to 20 and 200 µg/L of TBCO. To assess effects of TBCO on fecundity and oocyte maturation following in vivo exposure, sexually mature fish were fed a control, 100 µg/g, or 1000 µg/g concentration of TBCO-spiked fish food for 21 days, where fecundity was measured daily, and following the exposure, stage IX oocytes were excised to assess MIH-stimulated maturation. Fecundity and oocyte maturation were significantly decreased at either concentration of TBCO. Plasma concentrations of 17ß-estradiol (E2) and hepatic abundances of transcripts of vitellogenin (vtgI and vtgII) were quantified, but there were no significant differences between treatments. Results suggest that inhibition of oocyte maturation is a mechanism by which TBCO decreases fecundity, and that in vitro assays of oocyte maturation might be predictive of fecundity in this species.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37451416

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) is an emerging contaminant of concern that is generated through the environmental oxidation of the rubber tire anti-degradant 6PPD. Since the initial report of 6PPD-quinone being the cause of urban runoff mortality syndrome of Coho salmon, numerous species have been identified as either sensitive or insensitive to acute lethality caused by 6PPD-quinone. In sensitive species, acute lethality might be caused by uncoupling of mitochondrial respiration in gills. However, little is known about effects of 6PPD-quinone on insensitive species. Here we demonstrate that embryos of fathead minnows (Pimephales promelas) are insensitive to exposure to concentrations as great as 39.97 µg/L for 168 h, and adult fathead minnows are insensitive to exposure to concentrations as great as 9.4 µg/L for 96 h. A multi-omics approach using a targeted transcriptomics array, (EcoToxChips), and proton nuclear magnetic resonance (1H NMR) was used to assess responses of the transcriptomes and metabolomes of gills and livers from adult fathead minnows exposed to 6PPD-quinone for 96 h to begin to identify sublethal effects of 6PPD-quinone. There was little agreement between results of the EcoToxChip and metabolomics analyses, likely because genes present on the EcoToxChip were not representative of pathways suggested to be perturbed by metabolomic analysis. Changes in abundances of transcripts and metabolites in livers and gills suggest that disruption of one­carbon metabolism and induction of oxidative stress might be occurring in gills and livers, but that tissues differ in their sensitivity or responsiveness to 6PPD-quinone. Overall, several pathways impacted by 6PPD-quinone were identified as candidates for future studies of potential sublethal effects of this chemical.


Assuntos
Benzoquinonas , Cyprinidae , Fenilenodiaminas , Poluentes Químicos da Água , Animais , Cyprinidae/genética , Cyprinidae/crescimento & desenvolvimento , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Fenilenodiaminas/toxicidade , Benzoquinonas/toxicidade , Metabolômica , Brânquias/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos
10.
Environ Toxicol Chem ; 42(10): 2215-2228, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37283214

RESUMO

An expert meeting was organized by the World Health Organization (WHO) in 1997 to streamline assessments of risk posed by mixtures of dioxin-like chemicals (DLCs) through development of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) equivalency factors (TEFs) for mammals, birds, and fishes. No reevaluation has been performed for fish TEFs. Therefore, the objective of the present study was to reevaluate the TEFs for fishes based on an updated database of relative potencies (RePs) for DLCs. Selection criteria consistent with the WHO meeting resulted in 53 RePs across 14 species of fish ultimately being considered. Of these RePs, 70% were not available at the time of the WHO meeting. These RePs were used to develop updated TEFs for fishes based on a similar decision process as used at the WHO meeting. The updated TEF for 16 DLCs was greater than the WHO TEF, but only four differed by more than an order of magnitude. Measured concentrations of DLCs in four environmental samples were used to compare 2,3,7,8-TCDD equivalents (TEQs) calculated using the WHO TEFs relative to the updated TEFs. The TEQs for none of these environmental samples differed by more than an order of magnitude. Therefore, present knowledge supports that the WHO TEFs are suitable potency estimates for fishes. However, the updated TEFs pull from a larger database with a greater breadth of data and as a result offer greater confidence relative to the WHO TEFs. Risk assessors will have different criteria in the selection of TEFs, and the updated TEFs are not meant to immediately replace the formal WHO TEFs; but those who value a larger database and increased confidence in TEQs could consider using the updated TEFs. Environ Toxicol Chem 2023;42:2215-2228. © 2023 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Animais , Dibenzodioxinas Policloradas/toxicidade , Dibenzofuranos Policlorados , Peixes , Mamíferos
11.
Environ Toxicol Pharmacol ; 101: 104195, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353043

RESUMO

There is concern that microplastics can act as a vector for cadmium through adsorption and desorption of free-ionic cadmium. Little is known about the uptake of cadmium following ingestion of cadmium-microplastic complexes. This study used an in vitro gut sac technique to investigate the translocation of cadmium across the gut barrier of fathead minnows following the simulated ingestion of cadmium, microplastics, or their complexed mixture. Microplastics did not cross the gut membrane, nor did microplastics alter the rate of cadmium translocation, which was estimated to be 1.2 ± 0.04 ng Cd / hour. Less cadmium translocated when cadmium-microplastic complexes were injected than the equivalent dose of only cadmium, indicating that the presence of microplastics was protective of dietary cadmium uptake. This work highlights the importance of considering dietary uptake and the role of microplastics acting as a vector for cadmium in aquatic environments and stresses the need to understand how environmental (digestive or ambient) characteristics govern cadmium-microplastic interactions.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos , Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
12.
Environ Toxicol Chem ; 42(7): 1575-1585, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37083250

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are naturally occurring or anthropogenic organic chemicals that can activate the aryl hydrocarbon receptor 2 (AhR2) and induce toxicity in fishes. Alkyl PAHs are more abundant than nonalkylated PAHs in certain environmental matrices and there is growing evidence that alkylation can increase potency, dependent on the position of alkylation. However, it is unknown if the effect of alkylation on potency is conserved across species. In addition, relatively little is known regarding the extent of interspecies variation in sensitivity to PAHs and alkyl PAHs. Therefore, objectives of the present study were to characterize potency of benz[a]anthracene (BAA) and three alkylated homologues representing different alkylation positions in nine phylogenetically diverse species of fish using a standardized in vitro AhR2 transactivation assay. BAA and each alkylated homologue activated the AhR2 in a concentration-dependent manner in each species. Position-dependent effects on potency were observed in every species, but these effects were not consistent across species. Interspecies variation in sensitivity to AhR2 activation by each PAH was observed and ranged by up to 561-fold. Alkylation both increased and decreased the range of interspecies variation and sensitivity, but the potency of each alkylated homologue relative to BAA ranged by less than an order of magnitude among species. These results represent an early step toward the consideration of alkylated homologues for more objective ecological risk assessments of PAHs to native fishes. Environ Toxicol Chem 2023;42:1575-1585. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Receptores de Hidrocarboneto Arílico , Animais , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Ativação Transcricional , Antracenos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Peixes/genética , Peixes/metabolismo , Alquilação
13.
Environ Toxicol Chem ; 42(6): 1401-1408, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37036245

RESUMO

There is concern that microplastics can act as a vector for cadmium (Cd), altering the bioavailability and subsequent toxicity of Cd to ecologically important species such as Daphnia magna. The toxicity of Cd to D. magna has been well described; however, what is not known, and what the present study addresses, was how the addition of polyethylene microplastic altered Cd toxicity. Using high-throughput feeding assays and size assessments, the present study quantified effects of exposure to Cd, microplastic, or their mixture on daphnids from neonate to adult. Exposure to Cd inhibited feeding efficiency, while exposure to microplastic inhibited growth rates of juveniles. Daphnia magna coexposed to Cd and microplastic showed significant decreases in both feeding and prereproductive growth rate. There were no differences in life-history traits across any treatments. The alterations of feeding and growth while maintaining reproductive endpoints (time to first brood, reproductive frequency, the number of neonates released at each reproductive event, and the size of neonates produced) might be the result of a shift in energy allocation away from somatic growth, allowing individuals to maintain reproductive output despite lower nutritional reserves. Our findings suggest that cocontamination of microplastic and Cd has additive effects on feeding and growth rates, resulting in a greater energy allocation shift. Environ Toxicol Chem 2023;42:1401-1408. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cádmio , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Cádmio/análise , Microplásticos , Plásticos/toxicidade , Daphnia , Poluentes Químicos da Água/análise , Polietileno
14.
Aquat Toxicol ; 259: 106538, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37043988

RESUMO

Microplastics and metals are contaminants detected in many freshwater systems globally. Interactions of microplastics with other contaminants including cadmium poses potential threats to the health of aquatic organisms including Nephelopsis obscura, a predatory leech species that is widespread and serves important ecological and economic roles. The feeding biology of N. obscura has been well-described, including that serotonin regulates feeding behaviour. Further, exposure to cadmium has been found to cause decrease whole-body concentrations of serotonin. The influence that microplastic contamination and co-contamination of cadmium and microplastics has on N. obscura is unknown. The present study had three objectives: (1) to determine if water or sediment contaminated with cadmium, microplastics, or their mixture resulted in greater cadmium uptake by N. obscura, (2) to assess effects of chronic (21-day) exposure of N. obscura to waterborne cadmium, microplastics, and their mixture on bioaccumulation of cadmium, concentrations of serotonin, and feeding behaviour (latency to feeding, time spent feeding, and distance moved), and (3) to reassess the bioaccumulation of cadmium, concentrations of serotonin, and feeding behaviour following transfer to an uncontaminated environment for a one-week recovery period. This study revealed that access to and presence of sediment is protective against cadmium uptake and that cadmium is more readily accumulated from waterborne sources, even in environments where both sediment and surface water are contaminated. After 21-days of exposure to waterborne cadmium, microplastics, and their mixture, accumulation of cadmium, decreased concentrations of serotonin, and impaired feeding behaviours were greatest in leeches from the co-exposures compared to leeches from either single contaminant exposure group. Finally, after one week of depuration and recovery in freshwater following the 21-day exposures, concentrations of serotonin and feeding behaviour were restored in individuals from the microplastic exposure; however, cadmium-exposed individuals continued to show decreased concentrations of serotonin and behavioural deficits. The co-exposure of leeches to cadmium and microplastics resulted in additive effects to serotonin synthesis and feeding behaviour; however, this study demonstrated that leeches were able to recover from microplastic toxicity within a week whereas cadmium toxicity persisted.


Assuntos
Sanguessugas , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Cádmio/toxicidade , Plásticos/toxicidade , Serotonina/farmacologia , Poluentes Químicos da Água/toxicidade , Comportamento Alimentar , Água Doce , Sanguessugas/fisiologia , Água/farmacologia
15.
Chemosphere ; 313: 137561, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565769

RESUMO

Exposure of fishes to endocrine disrupting chemicals (EDCs) during early development can induce multigenerational and transgenerational effects on reproduction. Both in vivo and in vitro studies have demonstrated that the brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), is an EDC. The present study investigated whether TBCO has mutigenerational and/or transgenerational effects on the reproductive performance of Japanese medaka (Oryzias latipes). Sexually mature fish (F0 generation) were fed either a control diet or a low (40.6 µg/g) or high (1034.4 µg/g) diet containing TBCO, and three generations of embryos were reared to determine reproductive performance using a standard 21-day reproduction assay. Concentrations of TBCO in eggs (F1 generation) from F0 fish given the low and high diets were 711.3 and 2535.5 ng/g wet weight, respectively. Cumulative fecundity of the F1 generation in the low and high treatment were reduced by 33.9% and 33.3%, respectively, compared to the control. In the F2 generation, cumulative fecundity of the low treatment returned to the level of the controls, but the high treatment was decreased by 29.8%. There was no decrease in cumulative fecundity in the F3 generation compared to the controls. Mechanistically, mRNA abundances of cholesterol side chain cleavage enzyme (cyp11a), aromatase (cyp19a), and luteinizing hormone receptor (lhr) were differentially expressed in gonads from F1 females, suggesting that TBCO might cause developmental reprogramming that disrupts steroidogenesis leading to decreased fecundity. However, concentrations of E2 in plasma and mRNA abundance of vitellogenin in liver were not significantly different compared to controls suggesting a mechanism other than disruption of steroidogenesis or vitellogenesis. Mechanistically, no effects were observed in the F2 or F3 generation. Overall, results suggest that TBCO has multigenerational effects on the reproductive performance of Japanese medaka. However, no transgenerational effects were observed as the F3 generation fully recovered. The mechanism by which multigenerational effects were induced is not known.


Assuntos
Retardadores de Chama , Oryzias , Poluentes Químicos da Água , Animais , Feminino , Oryzias/genética , Retardadores de Chama/toxicidade , Reprodução , Fertilidade , Poluentes Químicos da Água/toxicidade
16.
Environ Toxicol Chem ; 41(8): 1993-2002, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694968

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are structurally diverse organic chemicals that can have adverse effects on the health of fishes through activation of aryl hydrocarbon receptor 2 (AhR2). They are ubiquitous in the environment, but alkyl PAHs are more abundant in some environmental matrices. However, relatively little is known regarding the effects of alkylation on the toxicity of PAHs to fishes in vivo and how this relates to potency for activation of AhR2 in vitro. Therefore, the objectives of the present study were to determine the toxicity of benz[a]anthracene and three alkylated homologs representing various alkylation positions to early life stages of zebrafish (Danio rerio) and to assess the potency of each for activation of the zebrafish AhR2 in a standardized in vitro AhR transactivation assay. Exposure of embryos to each of the PAHs caused a dose-dependent increase in mortality and malformations characteristic of AhR2 activation. Each alkyl homolog had in vivo toxicities and in vitro AhR2 activation potencies different from those of the parent PAH in a position-dependent manner. However, there was no statistically significant linear relationship between responses measured in these assays. The results suggest a need for further investigation into the effect of alkylation on the toxicity of PAHs to fishes and greater consideration of the contribution of alkylated homologs in ecological risk assessments. Environ Toxicol Chem 2022;41:1993-2002. © 2022 SETAC.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Peixe-Zebra , Alquilação , Animais , Antracenos/metabolismo , Embrião não Mamífero , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Ativação Transcricional , Peixe-Zebra/metabolismo
17.
Aquat Toxicol ; 248: 106206, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35635984

RESUMO

Benzotriazole ultraviolet stabilizers (BZT-UVs) are added to various products to prevent damage caused by UV light and have emerged as contaminants of concern. Although BZT-UVs are detected in aquatic biota globally, few studies have assessed their potential toxic effects. The objective of the present study was to assess effects of 2-(2H-Benzotriazol-2-yl)-4-methylphenol (UV-P) on reproductive success of Japanese medaka (Oryzias latipes) in a standard 21-day reproduction assay. Japanese medaka were exposed to dietary UV-P at concentrations of 0, 36, 158, and 634 ng UV-P/g food, for a total of 28 days which included 7 days of exposure prior to the start of the 21-day reproduction assay. No significant effect on egg production or fertilization success was observed. Abundances of transcripts of erα, vtgI, cyp1a, or cyp3a4 were not significantly different in livers from male or female fish exposed to UV-P. However, abundances of transcripts of cyp11a and cyp19a were significantly lower in gonads from female fish. There was a trend of increasing concentrations of E2 and a non-significant increase of T in the 634 ng/g treatment in plasma from female fish exposed to UV-P. Concentrations of 11-KT were unchanged in plasma from males exposed to UV-P. These responses suggest weak perturbation of steroidogenesis, consistent with an antiandrogenic mode of action. However, this perturbation was insufficient to impair reproductive performance. Metabolomics analysis of female livers suggests altered concentrations of various metabolites and biological pathways, including glutathione metabolism, suggesting that UV-P might cause responses related to oxidative stress or phase II metabolism. However, metabolomics revealed no obvious mechanism of toxicity. Overall, results of this study indicate that dietary exposure to UV-P up to 634 ng/g food does not significantly impact reproductive performance of Japanese medaka but impacts on steroidogenesis could indicate a potential mechanism of toxicity which might lead to reproductive impairment in more sensitive species.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Cresóis , Feminino , Masculino , Oryzias/fisiologia , Reprodução , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade
18.
Environ Toxicol Chem ; 41(6): 1381-1389, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35188285

RESUMO

Oogenesis is the process by which a primary oocyte develops into a fertilizable oocyte, making it critical to successful reproduction in fish. In zebrafish (Danio rerio), there are five stages of oogenesis. During the final step (oocyte maturation), the maturation-inducing hormone 17α,20ß-dihydroxy-4-pregnen-3-one (MIH) activates the membrane progestin receptor, inducing germinal vesicle breakdown. Using in vitro assays, it has been shown that anthropogenic stressors can dysregulate MIH-induced oocyte maturation. However, it is unknown whether the in vitro assay is predictive of reproductive performance after in vivo exposure. We demonstrate that a known inhibitor of oocyte maturation, malathion, and a structurally related chemical, dimethoate, inhibit oocyte maturation. However, malaoxon and omethoate, which are metabolites of malathion and dimethoate, did not inhibit oocyte maturation. Malathion and dimethoate inhibited maturation to a similar magnitude when oocytes were exposed for 4 h in vitro or 10 days in vivo, suggesting that the in vitro zebrafish oocyte maturation assay might be predictive of alterations to reproductive performance. However, when adult zebrafish were exposed to malathion for 21 days, there was no alteration in fecundity or fertility in comparison with control fish. Our study supports the oocyte maturation assay as being predictive of the success of in vitro oocyte maturation after in vivo exposure, but it remains unclear whether inhibition of MIH-induced oocyte maturation in vitro correlates to decreases in reproductive performance. Environ Toxicol Chem 2022;41:1381-1389. © 2022 SETAC.


Assuntos
Malation , Peixe-Zebra , Animais , Dimetoato , Malation/toxicidade , Oócitos/metabolismo , Oogênese , Peixe-Zebra/metabolismo
19.
Aquat Toxicol ; 238: 105929, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34375885

RESUMO

The brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), has been shown to decrease fecundity in Japanese medaka (Oryzias latipes) and there is indirect evidence from analysis of the transcriptome and proteome that this effect might be due to impaired oogenesis. An assay for disruption of oocyte maturation by chemical stressors has not been developed in Japanese medaka. Thus, using zebrafish (Danio rerio) as a model, objectives of the present study were to determine whether exposure to TBCO has effects on maturation of oocytes and to investigate potential mechanisms. Sexually mature female zebrafish were given a diet of 35.3 or 628.8 µg TBCO / g food for 14 days after which, stage IV oocytes were isolated to assess maturation in response to maturation inducing hormone. To explore potential molecular mechanisms, abundances of mRNAs of a suite of genes that regulate oocyte maturation were quantified by use of quantitative real-time PCR, and abundances of microRNAs were determined by use of miRNAseq. Ex vivo maturation of oocytes from fish exposed to TBCO was significantly less than maturation of oocytes from control fish. The percentage of oocytes which matured from control fish and those exposed to low and high TBCO were 89, 71, and 67%, respectively. Among the suite of genes known to regulate oocyte maturation, mRNA abundance of insulin like growth factor-3 was decreased by 1.64- and 3.44-fold in stage IV oocytes from females given the low and high concentrations of TBCO, respectively, compared to the control group. Abundances of microRNAs regulating the expression of proteins that regulate oocyte maturation, including processes related to insulin-like growth factor, were significantly different in stage IV oocytes from fish exposed to TBCO. Overall, results of this study indicated that impaired oocyte maturation might be a mechanism of reduced reproductive performance in TBCO-exposed fish. Results also suggested that effects of TBCO on oocyte maturation might be due to molecular perturbations on insulin-like growth factor signaling and expression of microRNAs.

20.
Environ Pollut ; 284: 117141, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901984

RESUMO

Chemosensory perception is crucial for fish reproduction and survival. Direct contact of olfactory neuroepithelium to the surrounding environment makes it vulnerable to contaminants in aquatic ecosystems. Copper nanoparticles (CuNPs), which are increasingly used in commercial and domestic applications due their exceptional properties, can impair fish olfactory function. However, the molecular events underlying olfactory toxicity of CuNPs are largely unexplored. Our results suggested that CuNPs were bioavailable to olfactory mucosal cells. Using RNA-seq, we compared the effect of CuNPs and copper ions (Cu2+) on gene transcript profiles of rainbow trout (Oncorhynchus mykiss) olfactory mucosa. The narrow overlap in differential gene expression between the CuNP- and Cu2+-exposed fish revealed that these two contaminants exert their effects through distinct mechanisms. We propose a transcript-based conceptual model that shows that olfactory signal transduction, calcium homeostasis, and synaptic vesicular signaling were affected by CuNPs in the olfactory sensory neurons (OSNs). Neuroregenerative pathways were also impaired by CuNPs. In contrast, Cu2+ did not induce toxicity pathways and rather upregulated regeneration pathways. Both Cu treatments reduced immune system pathway transcripts. However, suppression of transcripts that were associated with inflammatory signaling was only observed with CuNPs. Neither oxidative stress nor apoptosis were triggered by Cu2+ or CuNPs in mucosal cells. Dysregulation of transcripts that regulate function, maintenance, and reestablishment of damaged olfactory mucosa represents critical mechanisms of toxicity of CuNPs. The loss of olfaction by CuNPs may impact survival of rainbow trout and impose an ecological risk to fish populations in contaminated environments.


Assuntos
Nanopartículas , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Ecossistema , Mucosa Olfatória/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...