Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 4(3): e985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439574

RESUMO

Microglia are the innate myeloid cells of the central nervous system (CNS) parenchyma, functionally implicated in almost every defined neuroinflammatory and neurodegenerative disorder. Current understanding of disease pathogenesis for many neuropathologies is limited and/or lacks reliable diagnostic markers, vaccines, and treatments. With the increasing aging of society and rise in neurogenerative diseases, improving our understanding of their pathogenesis is essential. Analysis of microglia from murine disease models provides an investigative tool to unravel disease processes. In many neuropathologies, bone-marrow-derived monocytes are recruited to the CNS, adopting a phenotype similar to that of microglia. This significantly confounds the accurate identification of cell-type-specific functions and downstream therapeutic targeting. The increased capacity to analyze more phenotypic markers using spectral-cytometry-based technologies allows improved separation of microglia from monocyte-derived cells. Full-spectrum profiling enables enhanced marker resolution, time-efficient analysis of >40 fluorescence parameters, and extraction of cellular autofluorescence parameters. Coupling this system with additional cytometric technologies, including cell sorting and high-parameter imaging, can improve the understanding of microglial phenotypes in disease. To this end, we provide detailed, step-by-step protocols for the analysis of murine brain tissue by high-parameter ex vivo cytometric analysis using the Aurora spectral cytometer (Cytek), including best practices for unmixing and autofluorescence extraction, cell sorting for single-cell RNA analysis, and imaging mass cytometry. Together, this provides a toolkit for researchers to comprehensively investigate microglial disease processes at protein, RNA, and spatial levels for the identification of therapeutic targets in neuropathology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Processing the mouse brain into a single-cell suspension for microglia isolation Basic Protocol 2: Staining single-cell mouse brain suspensions for microglial phenotyping by spectral cytometry Basic Protocol 3: Flow cytometric sorting of mouse microglia for ex vivo analysis Basic Protocol 4: Processing the mouse brain for imaging mass cytometry for spatial microglia analysis.


Assuntos
Sistema Nervoso Central , Microglia , Animais , Camundongos , Neuropatologia , Envelhecimento , RNA
2.
Immunol Cell Biol ; 102(4): 280-291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421112

RESUMO

Natural killer (NK) cells are cytotoxic lymphocytes important for viral defense. West Nile virus (WNV) infection of the central nervous system (CNS) causes marked recruitment of bone marrow (BM)-derived monocytes, T cells and NK cells, resulting in severe neuroinflammation and brain damage. Despite substantial numbers of NK cells in the CNS, their function and phenotype remain largely unexplored. Here, we demonstrate that NK cells mature from the BM to the brain, upregulate inhibitory receptors and show reduced cytokine production and degranulation, likely due to the increased expression of the inhibitory NK cell molecule, MHC-I. Intriguingly, this correlated with a reduction in metabolism associated with cytotoxicity in brain-infiltrating NK cells. Importantly, the degranulation and killing capability were restored in NK cells isolated from WNV-infected tissue, suggesting that WNV-induced NK cell inhibition occurs in the CNS. Overall, this work identifies a potential link between MHC-I inhibition of NK cells and metabolic reduction of their cytotoxicity during infection.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/genética , Encéfalo , Células Matadoras Naturais , Linfócitos T
3.
Eur J Immunol ; 53(11): e2350521, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37595951

RESUMO

Regulatory T cells (Treg) maintain immune homeostasis due to their anti-inflammatory functions. They can be generated either centrally in the thymus or in peripheral organs. Metabolites such as short-chain fatty acids produced by intestinal microbiota can induce peripheral Treg differentiation, by activating G-protein-coupled-receptors like GPR109A. In this study, we identified a novel role for GPR109A in thymic Treg development. We found that Gpr109a-/- mice had increased Treg under basal conditions in multiple organs compared with WT mice. GPR109A was not expressed on T cells but on medullary thymic epithelial cells (mTECs), as revealed by single-cell RNA sequencing in both mice and humans and confirmed by flow cytometry in mice. mTECs isolated from Gpr109a-/- mice had higher expression of autoimmune regulator (AIRE), the key regulator of Treg development, while the subset of mTECs that did not express Gpr109a in the WT displayed increased Aire expression and also enhanced signaling related to mTEC functionality. Increased thymic Treg in Gpr109a-/- mice was associated with protection from experimental autoimmune encephalomyelitis, with ameliorated clinical signs and reduced inflammation. This work identifies a novel role for GPR109A and possibly the gut microbiota, on thymic Treg development via its regulation of mTECs.


Assuntos
Células Epiteliais , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Diferenciação Celular , Citometria de Fluxo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Timo
4.
Acta Neuropathol Commun ; 11(1): 60, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016414

RESUMO

As the resident parenchymal myeloid population in the central nervous system (CNS), microglia are strategically positioned to respond to neurotropic virus invasion and have been implicated in promoting both disease resolution and progression in the acute and post-infectious phase of virus encephalitis. In a mouse model of West Nile virus encephalitis (WNE), infection of the CNS results in recruitment of large numbers of peripheral immune cells into the brain, the majority being nitric oxide (NO)-producing Ly6Chi inflammatory monocyte-derived cells (MCs). In this model, these cells enhance immunopathology and mortality. However, the contribution of microglia to this response is currently undefined. Here we used a combination of experimental tools, including single-cell RNA sequencing (scRNA-seq), microglia and MC depletion reagents, high-dimensional spectral cytometry and computational algorithms to dissect the differential contribution of microglia and MCs to the anti-viral immune response in severe neuroinflammation seen in WNE. Intriguingly, analysis of scRNA-seq data revealed 6 unique microglia and 3 unique MC clusters that were predominantly timepoint-specific, demonstrating substantial transcriptional adaptation with disease progression over the course of WNE. While microglia and MC adopted unique gene expression profiles, gene ontology enrichment analysis, coupled with microglia and MC depletion studies, demonstrated a role for both of these cells in the trafficking of peripheral immune cells into the CNS, T cell responses and viral clearance. Over the course of infection, microglia transitioned from a homeostatic to an anti-viral and then into an immune cell-recruiting phenotype. Conversely, MC adopted antigen-presenting, immune cell-recruiting and NO-producing phenotypes, which all had anti-viral function. Overall, this study defines for the first time the single-cell transcriptomic responses of microglia and MCs over the course of WNE, demonstrating both protective and pathological roles of these cells that could potentially be targeted for differential therapeutic intervention to dampen immune-mediated pathology, while maintaining viral clearance functions.


Assuntos
Microglia , Febre do Nilo Ocidental , Animais , Camundongos , Microglia/patologia , Monócitos , Transcriptoma , Febre do Nilo Ocidental/patologia , Encéfalo/patologia
5.
Glia ; 71(4): 904-925, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36527260

RESUMO

Microglia and bone marrow-derived monocytes are key elements of central nervous system (CNS) inflammation, both capable of enhancing and dampening immune-mediated pathology. However, the study-specific focus on individual cell types, disease models or experimental approaches has limited our ability to infer common and disease-specific responses. This meta-analysis integrates bulk and single-cell transcriptomic datasets of microglia and monocytes from disease models of autoimmunity, neurodegeneration, sterile injury, and infection to build a comprehensive resource connecting myeloid responses across CNS disease. We demonstrate that the bulk microglial and monocyte program is highly contingent on the disease environment, challenging the notion of a universal microglial disease signature. Integration of six single-cell RNA-sequencing datasets revealed that these disease-specific signatures are likely driven by differing proportions of unique myeloid subpopulations that were individually expanded in different disease settings. These subsets were functionally-defined as neurodegeneration-associated, inflammatory, interferon-responsive, phagocytic, antigen-presenting, and lipopolysaccharide-responsive cellular states, revealing a core set of myeloid responses at the single-cell level that are conserved across CNS pathology. Showcasing the predictive and practical value of this resource, we performed differential expression analysis on microglia and monocytes across disease and identified Cd81 as a new neuroinflammatory-stable gene that accurately identified microglia and distinguished them from monocyte-derived cells across all experimental models at both the bulk and single-cell level. Together, this resource dissects the influence of disease environment on shared immune response programmes to build a unified perspective of myeloid behavior across CNS pathology.


Assuntos
Doenças do Sistema Nervoso , Transcriptoma , Animais , Camundongos , Sistema Nervoso Central/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Monócitos/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia
6.
Acta Neuropathol ; 143(2): 179-224, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34853891

RESUMO

In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.


Assuntos
Microglia/imunologia , Monócitos/imunologia , Doenças Neuroinflamatórias/imunologia , Animais , Humanos , Fenótipo
7.
J Neuroinflammation ; 18(1): 166, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34311763

RESUMO

BACKGROUND: Differentiating infiltrating myeloid cells from resident microglia in neuroinflammatory disease is challenging, because bone marrow-derived inflammatory monocytes infiltrating the inflamed brain adopt a 'microglia-like' phenotype. This precludes the accurate identification of either cell type without genetic manipulation, which is important to understand their temporal contribution to disease and inform effective intervention in its pathogenesis. During West Nile virus (WNV) encephalitis, widespread neuronal infection drives substantial CNS infiltration of inflammatory monocytes, causing severe immunopathology and/or death, but the role of microglia in this remains unclear. METHODS: Using high-parameter cytometry and dimensionality-reduction, we devised a simple, novel gating strategy to identify microglia and infiltrating myeloid cells during WNV-infection. Validating our strategy, we (1) blocked the entry of infiltrating myeloid populations from peripheral blood using monoclonal blocking antibodies, (2) adoptively transferred BM-derived monocytes and tracked their phenotypic changes after infiltration and (3) labelled peripheral leukocytes that infiltrate into the brain with an intravenous dye. We demonstrated that myeloid immigrants populated only the identified macrophage gates, while PLX5622 depletion reduced all 4 subsets defined by the microglial gates. RESULTS: Using this gating approach, we identified four consistent microglia subsets in the homeostatic and WNV-infected brain. These were P2RY12hi CD86-, P2RY12hi CD86+ and P2RY12lo CD86- P2RY12lo CD86+. During infection, 2 further populations were identified as 'inflammatory' and 'microglia-like' macrophages, recruited from the bone marrow. Detailed kinetic analysis showed significant increases in the proportions of both P2RY12lo microglia subsets in all anatomical areas, largely at the expense of the P2RY12hi CD86- subset, with the latter undergoing compensatory proliferation, suggesting replenishment of, and differentiation from this subset in response to infection. Microglia altered their morphology early in infection, with all cells adopting temporal and regional disease-specific phenotypes. Late in disease, microglia produced IL-12, downregulated CX3CR1, F4/80 and TMEM119 and underwent apoptosis. Infiltrating macrophages expressed both TMEM119 and P2RY12 de novo, with the microglia-like subset notably exhibiting the highest proportional myeloid population death. CONCLUSIONS: Our approach enables detailed kinetic analysis of resident vs infiltrating myeloid cells in a wide range of neuroinflammatory models without non-physiological manipulation. This will more clearly inform potential therapeutic approaches that specifically modulate these cells.


Assuntos
Encéfalo/patologia , Citometria de Fluxo/métodos , Microglia , Doenças Neuroinflamatórias/patologia , Análise Espaço-Temporal , Transferência Adotiva/métodos , Animais , Anticorpos Monoclonais/administração & dosagem , Barreira Hematoencefálica , Encéfalo/imunologia , Encéfalo/virologia , Feminino , Imunofenotipagem , Interleucina-12/imunologia , Interleucina-12/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/classificação , Microglia/imunologia , Microglia/fisiologia , Microglia/virologia , Células Mieloides/classificação , Células Mieloides/imunologia , Células Mieloides/fisiologia , Células Mieloides/virologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/virologia , Compostos Orgânicos , Coloração e Rotulagem , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/virologia
8.
Front Immunol ; 11: 600822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363542

RESUMO

Inflammation of the brain parenchyma is characteristic of neurodegenerative, autoimmune, and neuroinflammatory diseases. During this process, microglia, which populate the embryonic brain and become a permanent sentinel myeloid population, are inexorably joined by peripherally derived monocytes, recruited by the central nervous system. These cells can quickly adopt a morphology and immunophenotype similar to microglia. Both microglia and monocytes have been implicated in inducing, enhancing, and/or maintaining immune-mediated pathology and thus disease progression in a number of neuropathologies. For many years, experimental and analytical systems have failed to differentiate resident microglia from peripherally derived myeloid cells accurately. This has impeded our understanding of their precise functions in, and contributions to, these diseases, and hampered the development of novel treatments that could target specific cell subsets. Over the past decade, microglia have been investigated more intensively in the context of neuroimmunological research, fostering the development of more precise experimental systems. In light of our rapidly growing understanding of these cells, we discuss the differential origins of microglia and peripherally derived myeloid cells in the inflamed brain, with an analysis of the problems resolving these cell types phenotypically and morphologically, and highlight recent developments enabling more precise identification.


Assuntos
Encéfalo/imunologia , Microglia/imunologia , Monócitos/imunologia , Animais , Encéfalo/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Microglia/patologia , Monócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...