Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39011902

RESUMO

This report describes the knowledge mobilization and translation outcomes of the Canadian-funded portion of a large, international project called the Food Biomarker Alliance (FoodBAll), which ran from 2015 to 2019. This remarkably successful project led to a large number of important findings, outputs, and impacts. In particular, FoodBAll unequivocally demonstrated that metabolomics could be used to not only discover biomarkers of food intake (BFIs), but also to measure diet in a more objective manner. FoodBAll also created standards for assessing and validating BFIs, papers and databases describing BFIs, and kits for measuring BFIs and it laid the groundwork for many global studies exploring food composition and precision nutrition.

2.
PLoS One ; 19(6): e0304522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837993

RESUMO

BACKGROUND: A subset of individuals (10-20%) experience post-COVID condition (PCC) subsequent to initial SARS-CoV-2 infection, which lacks effective treatment. PCC carries a substantial global burden associated with negative economic and health impacts. This study aims to evaluate the association between plasma taurine levels with self-reported symptoms and adverse clinical outcomes in patients with PCC. METHODS AND FINDINGS: We analyzed the plasma proteome and metabolome of 117 individuals during their acute COVID-19 hospitalization and at the convalescence phase six-month post infection. Findings were compared with 28 age and sex-matched healthy controls. Plasma taurine levels were negatively associated with PCC symptoms and correlated with markers of inflammation, tryptophan metabolism, and gut dysbiosis. Stratifying patients based on the trajectories of plasma taurine levels during six-month follow-up revealed a significant association with adverse clinical events. Increase in taurine levels during the transition to convalescence were associated with a reduction in adverse events independent of comorbidities and acute COVID-19 severity. In a multivariate analysis, increased plasma taurine level between acute and convalescence phase was associated with marked protection from adverse clinical events with a hazard ratio of 0.13 (95% CI: 0.05-0.35; p<0.001). CONCLUSIONS: Taurine emerges as a promising predictive biomarker and potential therapeutic target in PCC. Taurine supplementation has already demonstrated clinical benefits in various diseases and warrants exploration in large-scale clinical trials for alleviating PCC.


Assuntos
COVID-19 , SARS-CoV-2 , Taurina , Humanos , Taurina/sangue , COVID-19/sangue , COVID-19/complicações , Feminino , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Adulto , Biomarcadores/sangue , Idoso , Síndrome de COVID-19 Pós-Aguda , Estudos de Casos e Controles , Metaboloma , Carga de Sintomas
3.
J Crohns Colitis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842257

RESUMO

BACKGROUND AND AIMS: We aimed to identify serum metabolites associated with mucosal and transmural inflammation in pediatric Crohn disease (pCD). METHODS: Fifty-six pCD patients were included through a pre-planned sub-study of the multicenter, prospective, ImageKids cohort, designed to develop the Pediatric Inflammatory Crohn's MRE Index (PICMI). Children were included throughout their disease course when undergoing ileocolonoscopy and magnetic resonance enterography (MRE) and followed for 18 months when MRE was repeated. Serum metabolites were identified using liquid chromatography/mass spectroscopy. Outcomes included: PICMI, the simple endoscopic score (SES), faecal calprotectin (FCP), and C-reactive protein (CRP), to assess transmural, mucosal, and systemic inflammation, respectively. Random forest models were built by outcome. Maximum relevance minimum redundancy (mRMR) feature selection with a j-fold cross validation scheme identified the best subset of features and hyperparameter settings. RESULTS: Tryptophan and glutarylcarnitine were the top common mRMR metabolites linked to pCD inflammation. Random forest models established that amino acids and amines were among the most influential metabolites for predicting transmural and mucosal inflammation. Predictive models performed well, each with an area under the curve (AUC) > 70%. In addition, serum metabolites linked with pCD inflammation mainly related to perturbations in citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, tryptophan metabolism, butanoate metabolism, and tyrosine metabolism. CONCLUSIONS: We extend on recent studies, observing differences in serum metabolite between healthy controls and Crohn disease patients, and suggest various associations of serum metabolites with transmural and mucosal inflammation. These metabolites could improve the understanding of pCD pathogenesis and assess disease severity.

4.
Nanomaterials (Basel) ; 14(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38727390

RESUMO

Continuous glucose monitoring is valuable for people with diabetes but faces limitations due to enzyme-electrode interactions and biofouling from biological samples that reduce sensor sensitivity and the monitoring performance. We created an enzyme-based electrochemical system with a unique nanocomposite coating that incorporates the redox molecule, aminoferrocene (NH2-Fc). This coating enhances stability via electroactivity and reduces nonspecific binding, as demonstrated through cyclic voltammetry. Our approach enables real-time glucose detection via chronoamperometry with a calculated linear range of 0.5 to 20 mM and a 1 mM detection limit. Validated with plasma and saliva, this platform shows promise for robust metabolite detection in clinical and research contexts. This versatile platform can be applied to accurately monitor a wide range of metabolites in various biological matrices, improving patient outcomes.

5.
Metabolites ; 14(5)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38786767

RESUMO

NMR is widely considered the gold standard for organic compound structure determination. As such, NMR is routinely used in organic compound identification, drug metabolite characterization, natural product discovery, and the deconvolution of metabolite mixtures in biofluids (metabolomics and exposomics). In many cases, compound identification by NMR is achieved by matching measured NMR spectra to experimentally collected NMR spectral reference libraries. Unfortunately, the number of available experimental NMR reference spectra, especially for metabolomics, medical diagnostics, or drug-related studies, is quite small. This experimental gap could be filled by predicting NMR chemical shifts for known compounds using computational methods such as machine learning (ML). Here, we describe how a deep learning algorithm that is trained on a high-quality, "solvent-aware" experimental dataset can be used to predict 1H chemical shifts more accurately than any other known method. The new program, called PROSPRE (PROton Shift PREdictor) can accurately (mean absolute error of <0.10 ppm) predict 1H chemical shifts in water (at neutral pH), chloroform, dimethyl sulfoxide, and methanol from a user-submitted chemical structure. PROSPRE (pronounced "prosper") has also been used to predict 1H chemical shifts for >600,000 molecules in many popular metabolomic, drug, and natural product databases.

6.
Life (Basel) ; 14(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38792560

RESUMO

We show that the nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine, and the "core" nucleic acid bases purine and pyrimidine, are stable for more than one year in concentrated sulfuric acid at room temperature and at acid concentrations relevant for Venus clouds (81% w/w to 98% w/w acid, the rest water). This work builds on our initial stability studies and is the first ever to test the reactivity and structural integrity of organic molecules subjected to extended incubation in concentrated sulfuric acid. The one-year-long stability of nucleic acid bases supports the notion that the Venus cloud environment-composed of concentrated sulfuric acid-may be able to support complex organic chemicals for extended periods of time.

7.
Nucleic Acids Res ; 52(W1): W381-W389, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38783107

RESUMO

GCMS-ID (Gas Chromatography Mass Spectrometry compound IDentifier) is a webserver designed to enable the identification of compounds from GC-MS experiments. GC-MS instruments produce both electron impact mass spectra (EI-MS) and retention index (RI) data for as few as one, to as many as hundreds of different compounds. Matching the measured EI-MS, RI or EI-MS + RI data to experimentally collected EI-MS and/or RI reference libraries allows facile compound identification. However, the number of available experimental RI and EI-MS reference spectra, especially for metabolomics or exposomics-related studies, is disappointingly small. Using machine learning to accurately predict the EI-MS spectra and/or RIs for millions of metabolomics and/or exposomics-relevant compounds could (partially) solve this spectral matching problem. This computational approach to compound identification is called in silico metabolomics. GCMS-ID brings this concept of in silico metabolomics closer to reality by intelligently integrating two of our previously published webservers: CFM-EI and RIpred. CFM-EI is an EI-MS spectral prediction webserver, and RIpred is a Kovats RI prediction webserver. We have found that GCMS-ID can accurately identify compounds from experimental RI, EI-MS or RI + EI-MS data through matching to its own large library of >1 million predicted RI/EI-MS values generated for metabolomics/exposomics-relevant compounds. GCMS-ID can also predict the RI or EI-MS spectrum from a user-submitted structure or annotate a user-submitted EI-MS spectrum. GCMS-ID is freely available at https://gcms-id.ca/.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Internet , Metabolômica , Software , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Aprendizado de Máquina
8.
Metabolites ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38668333

RESUMO

Mastitis is a significant infectious disease in dairy cows, resulting in milk yield loss and culling. Early detection of mastitis-prone cows is crucial for implementing effective preventive measures before disease onset. Current diagnosis of subclinical mastitis (SCM) relies on somatic cell count assessment post-calving, lacking predictive capabilities. This study aimed to identify metabolic changes in pre-SCM cows through targeted metabolomic analysis of urine samples collected 8 wks and 4 wks before calving, using mass spectrometry. A nested case-control design was employed, involving a total of 145 multiparous dairy cows, with disease occurrence monitored pre- and postpartum. Among them, 15 disease-free cows served as healthy controls (CON), while 10 cows exclusively had SCM, excluding those with additional diseases. Urinary metabolite profiling revealed multiple alterations in acylcarnitines, amino acids, and organic acids in pre-SCM cows. Metabotyping identified 27 metabolites that distinguished pre-SCM cows from healthy CON cows at both 8 and 4 wks before parturition. However, only four metabolites per week showed significant alterations (p < 0.005). Notably, a panel of four serum metabolites (asymmetric dimethylarginine, proline, leucine, and homovanillate) at 8 wks prepartum, and another panel (asymmetric dimethylarginine, methylmalonate, citrate, and spermidine) at 4 wks prepartum, demonstrated predictive ability as urinary biomarkers for SCM risk (AUC = 0.88; p = 0.02 and AUC = 0.88; p = 0.03, respectively). In conclusion, our findings indicate that metabolite testing can identify cows at risk of SCM as early as 8 and 4 wks before parturition. Validation of the two identified metabolite panels is warranted to implement these predictive biomarkers, facilitate early intervention strategies, and improve dairy cow management to mitigate the impact of SCM. Further research is needed to confirm the efficacy and applicability of these biomarkers in practical farm settings.

9.
OMICS ; 28(4): 182-192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634790

RESUMO

Over a decade ago, longitudinal multiomics analysis was pioneered for early disease detection and individually tailored precision health interventions. However, high sample processing costs, expansive multiomics measurements along with complex data analysis have made this approach to precision/personalized medicine impractical. Here we describe in a case report, a more practical approach that uses fewer measurements, annual sampling, and faster decision making. We also show how this approach offers promise to detect an exceedingly rare and potentially fatal condition before it fully manifests. Specifically, we describe in the present case report how longitudinal multiomics monitoring (LMOM) helped detect a precancerous pancreatic tumor and led to a successful surgical intervention. The patient, enrolled in an annual blood-based LMOM since 2018, had dramatic changes in the June 2021 and 2022 annual metabolomics and proteomics results that prompted further clinical diagnostic testing for pancreatic cancer. Using abdominal magnetic resonance imaging, a 2.6 cm lesion in the tail of the patient's pancreas was detected. The tumor fluid from an aspiration biopsy had 10,000 times that of normal carcinoembryonic antigen levels. After the tumor was surgically resected, histopathological findings confirmed it was a precancerous pancreatic tumor. Postoperative omics testing indicated that most metabolite and protein levels returned to patient's 2018 levels. This case report illustrates the potentials of blood LMOM for precision/personalized medicine, and new ways of thinking medical innovation for a potentially life-saving early diagnosis of pancreatic cancer. Blood LMOM warrants future programmatic translational research with the goals of precision medicine, and individually tailored cancer diagnoses and treatments.


Assuntos
Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Humanos , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Detecção Precoce de Câncer/métodos , Imageamento por Ressonância Magnética , Metabolômica/métodos , Multiômica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/genética , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/sangue , Lesões Pré-Cancerosas/patologia , Medicina de Precisão/métodos , Proteômica/métodos , Feminino
10.
STAR Protoc ; 5(2): 103041, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38678567

RESUMO

Here, we present a workflow for analyzing multi-omics data of plasma samples in patients with post-COVID condition (PCC). Applicable to various diseases, we outline steps for data preprocessing and integrating diverse assay datasets. Then, we detail statistical analysis to unveil plasma profile changes and identify biomarker-clinical variable associations. The last two steps discuss machine learning techniques for unsupervised clustering of patients based on their inherent molecular similarities and feature selection to identify predictive biomarkers. For complete details on the use and execution of this protocol, please refer to Wang et al.1.


Assuntos
Biomarcadores , COVID-19 , Aprendizado de Máquina , SARS-CoV-2 , Humanos , COVID-19/sangue , COVID-19/virologia , Biomarcadores/sangue , SARS-CoV-2/isolamento & purificação , Plasma/química , Plasma/metabolismo , Proteômica/métodos , Multiômica
11.
Nucleic Acids Res ; 52(W1): W398-W406, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38587201

RESUMO

We introduce MetaboAnalyst version 6.0 as a unified platform for processing, analyzing, and interpreting data from targeted as well as untargeted metabolomics studies using liquid chromatography - mass spectrometry (LC-MS). The two main objectives in developing version 6.0 are to support tandem MS (MS2) data processing and annotation, as well as to support the analysis of data from exposomics studies and related experiments. Key features of MetaboAnalyst 6.0 include: (i) a significantly enhanced Spectra Processing module with support for MS2 data and the asari algorithm; (ii) a MS2 Peak Annotation module based on comprehensive MS2 reference databases with fragment-level annotation; (iii) a new Statistical Analysis module dedicated for handling complex study design with multiple factors or phenotypic descriptors; (iv) a Causal Analysis module for estimating metabolite - phenotype causal relations based on two-sample Mendelian randomization, and (v) a Dose-Response Analysis module for benchmark dose calculations. In addition, we have also improved MetaboAnalyst's visualization functions, updated its compound database and metabolite sets, and significantly expanded its pathway analysis support to around 130 species. MetaboAnalyst 6.0 is freely available at https://www.metaboanalyst.ca.


Assuntos
Algoritmos , Metabolômica , Software , Espectrometria de Massas em Tandem , Metabolômica/métodos , Cromatografia Líquida , Humanos , Bases de Dados Factuais
12.
Biosens Bioelectron ; 253: 116186, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457862

RESUMO

Metabolomics is the large-scale study of small molecule metabolites within a biological system. It has applications in measuring dietary intake, predicting heart disease risk, and diagnosing cancer. Metabolites are often measured using high-end analytical tools such as mass spectrometers or large spectrophotometers. However, due to their size, cost, and need for skilled operators, using such equipment at the bedside is not practical. To address this issue, we have developed a low-cost, portable, optical color sensor platform for metabolite detection. This platform includes LEDs, sensors, microcontrollers, a power source, and a Bluetooth chip enclosed within a 3D-printed light-tight case. We evaluated the color sensor's performance using both a range of dyed water samples as well as well-established colorimetric reactions for specific metabolite detection. The sensor accurately measured creatinine, L-carnitine, ascorbate, and succinate well within normal human urine levels with accuracy and sensitivity equal to or better than a standard laboratory spectrophotometer. Our color sensor offers a cost-effective, portable alternative for measuring metabolites via colorimetric assays, thereby enabling low-cost, point-of-care metabolite testing.


Assuntos
Técnicas Biossensoriais , Colorimetria , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Espectrofotometria
14.
Commun Chem ; 7(1): 30, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355930

RESUMO

Modern untargeted mass spectrometry (MS) analyses quickly detect and resolve thousands of molecular compounds. Although features are readily annotated with a molecular formula in high-resolution small-molecule MS applications, the large majority of them remains unidentified in terms of their full molecular structure. Collision-induced dissociation tandem mass spectrometry (CID-MS2) provides a diagnostic molecular fingerprint to resolve the molecular structure through a library search. However, for de novo identifications, one must often rely on in silico generated MS2 spectra as reference. The ability of different in silico algorithms to correctly predict MS2 spectra and thus to retrieve correct molecular structures is a topic of lively debate, for instance in the CASMI contest. Underlying the predicted MS2 spectra are the in silico generated product ion structures, which are normally not used in de novo identification, but which can serve to critically assess the fragmentation algorithms. Here we evaluate in silico generated MSn product ion structures by comparison with structures established experimentally by infrared ion spectroscopy (IRIS). For a set of three dozen product ion structures from five precursor molecules, we find that virtually all fragment ion structure annotations in three major in silico MS2 libraries (HMDB, METLIN, mzCloud) are incorrect and caution the reader against their use for structure annotation of MS/MS ions.

15.
J Agric Food Chem ; 72(25): 14099-14113, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38181219

RESUMO

Cannabis is widely used for medicinal and recreational purposes. As a result, there is increased interest in its chemical components and their physiological effects. However, current information on cannabis chemistry is often outdated or scattered across many books and journals. To address this issue, we used modern metabolomics techniques and modern bioinformatics techniques to compile a comprehensive list of >6000 chemical constituents in commercial cannabis. The metabolomics methods included a combination of high- and low-resolution liquid chromatography-mass spectrometry (MS), gas chromatography-MS, and inductively coupled plasma-MS. The bioinformatics methods included computer-aided text mining and computational genome-scale metabolic inference. This information, along with detailed compound descriptions, physicochemical data, known physiological effects, protein targets, and referential compound spectra, has been made available through a publicly accessible database called the Cannabis Compound Database (https://cannabisdatabase.ca). Such a centralized, open-access resource should prove to be quite useful for the cannabis community.


Assuntos
Cannabis , Cannabis/química , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/química , Espectrometria de Massas , Biologia Computacional
16.
Metabolites ; 14(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248844

RESUMO

Maternal pathological conditions such as infections and chronic diseases, along with unexpected events during labor, can lead to life-threatening perinatal outcomes. These outcomes can have irreversible consequences throughout an individual's entire life. Urinary metabolomics can provide valuable insights into early physiological adaptations in healthy newborns, as well as metabolic disturbances in premature infants or infants with birth complications. In the present study, we measured 180 metabolites and metabolite ratios in the urine of 13 healthy (hospital-discharged) and 38 critically ill newborns (admitted to the neonatal intensive care unit (NICU)). We used an in-house-developed targeted tandem mass spectrometry (MS/MS)-based metabolomic assay (TMIC Mega) combining liquid chromatography (LC-MS/MS) and flow injection analysis (FIA-MS/MS) to quantitatively analyze up to 26 classes of compounds. Average urinary concentrations (and ranges) for 167 different metabolites from 38 critically ill NICU newborns during their first 24 h of life were determined. Similar sets of urinary values were determined for the 13 healthy newborns. These reference data have been uploaded to the Human Metabolome Database. Urinary concentrations and ranges of 37 metabolites are reported for the first time for newborns. Significant differences were found in the urinary levels of 44 metabolites between healthy newborns and those admitted at the NICU. Metabolites such as acylcarnitines, amino acids and derivatives, biogenic amines, sugars, and organic acids are dysregulated in newborns with bronchopulmonary dysplasia (BPD), asphyxia, or newborns exposed to SARS-CoV-2 during the intrauterine period. Urine can serve as a valuable source of information for understanding metabolic alterations associated with life-threatening perinatal outcomes.

17.
Antioxid Redox Signal ; 40(7-9): 510-541, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37382416

RESUMO

Significance: Hydroxycinnamic acids (HCAs) are the main phenolic acids in the western diet. Harmonizing the available information on the absorption, distribution, metabolism, and excretion (ADME) of HCAs is fundamental to unraveling the compounds responsible for their health effects. This work systematically assessed pharmacokinetics, including urinary recovery, and bioavailability of HCAs and their metabolites, based on literature reports. Recent Advances: Forty-seven intervention studies with coffee, berries, herbs, cereals, tomato, orange, grape products, and pure compounds, as well as other sources yielding HCA metabolites, were included. Up to 105 HCA metabolites were collected, mainly acyl-quinic and C6-C3 cinnamic acids. C6-C3 cinnamic acids, such as caffeic and ferulic acid, reached the highest blood concentrations (maximum plasma concentration [Cmax] = 423 nM), with time to reach Cmax (Tmax) values ranging from 2.7 to 4.2 h. These compounds were excreted in urine in higher amounts than their phenylpropanoic acid derivatives (4% and 1% of intake, respectively), but both in a lower percentage than hydroxybenzene catabolites (11%). Data accounted for 16 and 18 main urinary and blood HCA metabolites, which were moderately bioavailable in humans (collectively 25%). Critical Issues: A relevant variability emerged. It was not possible to unequivocally assess the bioavailability of HCAs from each ingested source, and data from some plant based-foods were absent or inconsistent. Future Directions: A comprehensive study investigating the ADME of HCAs derived from their most important dietary sources is urgently required. Eight key metabolites were identified and reached interesting plasma Cmax concentrations and urinary recoveries, opening up new perspectives to evaluate their bioactivity at physiological concentrations. Antioxid. Redox Signal. 40, 510-541.


Assuntos
Cinamatos , Ácidos Cumáricos , Humanos , Ácidos Cumáricos/farmacocinética , Disponibilidade Biológica , Cinamatos/farmacocinética , Cinamatos/urina , Café/metabolismo
18.
Nucleic Acids Res ; 52(D1): D654-D662, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962386

RESUMO

PathBank (https://pathbank.org) and its predecessor database, the Small Molecule Pathway Database (SMPDB), have been providing comprehensive metabolite pathway information for the metabolomics community since 2010. Over the past 14 years, these pathway databases have grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in computing technology. This year's update, PathBank 2.0, brings a number of important improvements and upgrades that should make the database more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of primary or canonical pathways (from 1720 to 6951); (ii) a massive increase in the total number of pathways (from 110 234 to 605 359); (iii) significant improvements to the quality of pathway diagrams and pathway descriptions; (iv) a strong emphasis on drug metabolism and drug mechanism pathways; (v) making most pathway images more slide-compatible and manuscript-compatible; (vi) adding tools to support better pathway filtering and selecting through a more complete pathway taxonomy; (vii) adding pathway analysis tools for visualizing and calculating pathway enrichment. Many other minor improvements and updates to the content, the interface and general performance of the PathBank website have also been made. Overall, we believe these upgrades and updates should greatly enhance PathBank's ease of use and its potential applications for interpreting metabolomics data.


Assuntos
Bases de Dados Genéticas , Redes e Vias Metabólicas , Metabolômica , Redes e Vias Metabólicas/genética , Metaboloma , Metabolômica/métodos , Internet
19.
Nucleic Acids Res ; 52(D1): D1265-D1275, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953279

RESUMO

First released in 2006, DrugBank (https://go.drugbank.com) has grown to become the 'gold standard' knowledge resource for drug, drug-target and related pharmaceutical information. DrugBank is widely used across many diverse biomedical research and clinical applications, and averages more than 30 million views/year. Since its last update in 2018, we have been actively enhancing the quantity and quality of the drug data in this knowledgebase. In this latest release (DrugBank 6.0), the number of FDA approved drugs has grown from 2646 to 4563 (a 72% increase), the number of investigational drugs has grown from 3394 to 6231 (a 38% increase), the number of drug-drug interactions increased from 365 984 to 1 413 413 (a 300% increase), and the number of drug-food interactions expanded from 1195 to 2475 (a 200% increase). In addition to this notable expansion in database size, we have added thousands of new, colorful, richly annotated pathways depicting drug mechanisms and drug metabolism. Likewise, existing datasets have been significantly improved and expanded, by adding more information on drug indications, drug-drug interactions, drug-food interactions and many other relevant data types for 11 891 drugs. We have also added experimental and predicted MS/MS spectra, 1D/2D-NMR spectra, CCS (collision cross section), RT (retention time) and RI (retention index) data for 9464 of DrugBank's 11 710 small molecule drugs. These and other improvements should make DrugBank 6.0 even more useful to a much wider research audience ranging from medicinal chemists to metabolomics specialists to pharmacologists.


Assuntos
Bases de Conhecimento , Metabolômica , Espectrometria de Massas em Tandem , Bases de Dados Factuais , Interações Alimento-Droga
20.
Macromol Biosci ; 24(2): e2300133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37728207

RESUMO

Kidney dysfunction leads to the retention of metabolites in the blood compartment, some of which reach toxic levels. Uremic toxins are associated with the progression of kidney disease and other symptoms of kidney failure (i.e., nausea, itchiness, and hypertension). Toxin removal ameliorates symptoms and reduces further organ damage, but membrane-based methods are inadequate for this purpose. Engineered adsorbents may facilitate enhanced removal of retained toxins, especially those bound strongly by proteins. Poly 2-(methacryloyloxy)ethyl phosphorylcholine-co-ß-cyclodextrin (p(MPC-co-PMßCD)) coated magnetic nanoparticles are synthesized, characterized for their physicochemical properties (Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), thermogravimetric analysis(TGA), gel permeation chromatography (GPC), and transmission electron microscope (TEM), and evaluated toxin adsorption from a complex solution for the first time to quantify the effects of film chemistry and incubation time on the adsorbed toxinome (the collection of toxins). Uremic toxins are bound by even "low-fouling" polymer films themselves; providing further insight into how small molecule interactions with "low-fouling" films may affect protein-surface interactions. These results suggest a dynamic interaction between toxins and surfaces that is not driven by solution concentration alone. This knowledge will help advance the design of novel adsorbent films for clearing uremic toxins.


Assuntos
Nanopartículas de Magnetita , Toxinas Biológicas , Adsorção , Toxinas Urêmicas , Toxinas Biológicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...