Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 14(22): 8147-59, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22555191

RESUMO

The crystal structure of 2-butylamino-4-nitro-5-methyl pyridine N-oxide (2B5M) and solution studies of both 2B5M and 2-methylamino-4-nitro-5-methyl pyridine (2M5M) N-oxide are presented. Steady-state absorption and emission measurements were employed for both molecules while a picosecond fluorescence up-conversion technique was used to follow the dynamic behavior of the 2M5M system. The experimental methods were complemented by DFT and TD DFT B3LYP/6-31G(d,p) calculations involving ground and excited-state optimization which in the case of the smaller 2M5M molecule were extended to the CAM-B3LYP/6-31G(d,p) method. The solvent effect is incorporated by applying the polarizable continuum (PCM) model. The data reveal that the 2B5M molecule crystallizes in the monoclinic space group P2(1)/c and its crystal lattice is composed of monomers with intramolecular N-H···O [2.572(3) Å] hydrogen bonds, connected into a polymer network by weak intermolecular C-H…O [3.2-3.4 Å]-type interactions. Quantum-chemical calculations show that the aminoalkyl substitutent in aminoalkyl-pyridine N-oxides is a specific determinant of the CT nature of the lowest-lying excited electronic ππ* state, distinguishing them from other nitroaromatic compounds. The results of both picosecond fluorescence up-conversion experiments in different solvents and quantum-chemical calculations suggest that in nonpolar media the ESIPT process in 2M5M is favored, while in polar acetonitrile, the N* → PT* transition demands barrier-crossing and thus unfavorable thermodynamic conditions do not allow the ESIPT to occur. The signals of picosecond fluorescence up-conversion of 2M5M are solvent- and emission-wavelength dependent. The three time components found in a weakly polar isooctane-dioxane mixture have been attributed to solvation dynamics (∼500 fs), and to relaxation of N* and PT* forms while in acetonitrile, a very rapid fluorescence decay with a time constant (2.3-4.0 ps) indicative of the presence of the normal (N*) form was observed. Much shorter fluorescence lifetimes in alcohols (a few picoseconds) and in D(2)O (less than 200 fs) than in aprotic solvents suggest that in protic media, the solvent molecules participate in the ESIPT, bridging between the methylamine group and the N-oxide group of 2M5M.


Assuntos
Prótons , Piridinas/química , Solventes/química , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectrometria de Fluorescência
2.
J Phys Chem B ; 115(25): 8078-87, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21644566

RESUMO

The fluorescent probe, 2-hydroxynaphthalene(dodecylo)-6-sulfonamide (NSDA) bound selectively to shear plane of various electrostatic charges was synthesized and its photophysical properties have been investigated by means of steady state fluorescence and nanosecond time-resolved spectroscopy. Our experimental data allowed us to determine the excited state proton transfer (ESPT) rate and equilibrium constants of NSDA bound to micelles and to estimate the electric potential value (Ψ) at the particle surface. The spatial dependence of proton movement velocity through electric double layer (EDL) of micelles has been thoroughly analyzed. In this article, a new approach of estimating the values of the micelle potential (Ψ(R)) from the excited state proton transfer rate constant of the fluorescent probe bound at a certain distance (R) to a micellar surface has been proposed. The Ψ(R) values, obtained in this way, are compared with electrophoretic values of the particle potential (ζ). Our results on electrophoretic potentials and the reaction course of the ESPT in colloidal environment may contribute to a deeper understanding of micellar interactions and behavior of the living cells in contact with various diluted substances such as pharmacological drugs, hormones, proteins, and other colloidal particles.


Assuntos
Corantes Fluorescentes/química , Micelas , Nanopartículas/química , Naftalenos/química , Sulfonamidas/química , Coloides/química , Prótons , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...