Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1573, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005843

RESUMO

Microfluidic chips provide a powerful platform for high-throughput screening of diverse biophysical systems. The most prevalent detection methods are fluorescence based. Developing new readout techniques for microfluidics focusing on quantitative information in the low signal regime is desirable. In this work, we combine the well-established immunoassay approach, with magnetic nanoparticles, with a highly sensitive magnetic imaging technique. We offer to integrate a microfluidic array into a scanning superconducting quantum interference device (SQUID) microscope, to image nanoparticles that were moved through the microfluidic device. We demonstrate the technique on protein-protein interactions (PPI). We compare sensitivity to that of a conventional readout, quantify the amount of interactions, and demonstrate 0.1 atto-mole sensitivity. Our work serves as a proof of concept that will promote the development of a new set of eyes, a stable usable microfluidic-scanning SQUID microscopy.

2.
Rev Sci Instrum ; 90(5): 053702, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31153251

RESUMO

Scanning superconducting quantum interference device (SQUID) microscopy is a powerful tool for investigating electronic states at surfaces and interfaces by mapping their magnetic signal. SQUID operation requires cryogenic temperatures, which are typically achieved by immersing the cryostat in liquid helium. Making a transition to cryogen free systems is desirable, but has been challenging, as electric noise and vibrations are increased in such systems. We report on the successful operation of a scanning SQUID microscope in a modified Montana Instruments cryogen-free cooler with a base temperature of 4.3 K. We demonstrate scanning SQUID measurements with flux noise performance comparable to a wet system and correlate the sensor-sample vibrations to the cryocooler operation frequencies. In addition, we demonstrate successful operation in a variety of SQUID operation modes, including mapping static magnetic fields, measurement of local susceptibility, and spatial mapping of current flow distribution.

3.
J Vis Exp ; (120)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28190040

RESUMO

Local, deterministic manipulation of individual vortices in type 2 superconductors is challenging. The ability to control the position of individual vortices is necessary in order to study how vortices interact with each other, with the lattice, and with other magnetic objects. Here, we present a protocol for vortex manipulation in thin superconducting films by local contact, without applying current or magnetic field. Vortices are imaged using a scanning superconducting quantum interference device (SQUID), and vertical stress is applied to the sample by pushing the tip of a silicon chip into the sample, using a piezoelectric element. Vortices are moved by tapping the sample or sweeping it with the silicon tip. Our method allows for effective manipulation of individual vortices, without damaging the film or affecting its topography. We demonstrate how vortices were relocated to distances of up to 0.8 mm. The vortices remained stable at their new location up to five days. With this method, we can control vortices and move them to form complex configurations. This technique for vortex manipulation could also be implemented in applications such as vortex based logic devices.


Assuntos
Condutividade Elétrica , Campos Eletromagnéticos , Fenômenos Magnéticos , Simulação por Computador , Modelos Químicos
4.
ACS Appl Mater Interfaces ; 8(23): 14863-70, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183029

RESUMO

The metal-insulator transition (MIT) properties of correlated oxides thin films, such as VO2, are dramatically affected by strain induced at the interface with the substrate, which usually changes with deposition thickness. For VO2 grown on r-cut sapphire, there is a minimum deposition thickness required for a significant MIT to appear, around 60 nm. We show that in these thicker films an interface layer develops, which accompanies the relaxation of film strain and enhanced electronic transition. If these interface dislocations are stable at room temperature, we conjectured, a new route opens to control thickness of VO2 films by postdeposition thinning of relaxed films, overcoming the need for thickness-dependent strain-engineered substrates. This is possible only if thinning does not alter the films' electronic properties. We find that wet etching in a dilute NaOH solution can effectively thin the VO2 films, which continue to show a significant MIT, even when etched to 10 nm, for which directly deposited films show nearly no transition. The structural and chemical composition were not modified by the etching, but the grain size and film roughness were, which modified the hysteresis width and magnitude of the MIT resistance change.

5.
Nano Lett ; 16(3): 1626-30, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26836018

RESUMO

Manipulating individual vortices in a deterministic way is challenging; ideally, manipulation should be effective, local, and tunable in strength and location. Here, we show that vortices respond to local mechanical stress applied in the vicinity of the vortex. We utilized this interaction to move individual vortices in thin superconducting films via local mechanical contact without magnetic field or current. We used a scanning superconducting quantum interference device to image vortices and to apply local vertical stress with the tip of our sensor. Vortices were attracted to the contact point, relocated, and were stable at their new location. We show that vortices move only after contact and that more effective manipulation is achieved with stronger force and longer contact time. Mechanical manipulation of vortices provides a local view of the interaction between strain and nanomagnetic objects as well as controllable, effective, and reproducible manipulation technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA