Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 112(2): 331-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23071218

RESUMO

BACKGROUND: Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. SCOPE: This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. CONCLUSIONS: Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.


Assuntos
Oryza/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Solo/química , Zinco/metabolismo , Transporte Biológico , Cruzamento , Ácidos Carboxílicos/metabolismo , Genótipo , Oryza/genética , Estresse Oxidativo , Fenótipo , Raízes de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo , Locos de Características Quantitativas , Rizosfera
2.
New Phytol ; 192(3): 676-88, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21827499

RESUMO

• The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional 'single porosity' models, this 'dual porosity' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture.


Assuntos
Modelos Biológicos , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Simulação por Computador , Umidade , Raízes de Plantas/anatomia & histologia , Porosidade , Solo , Água/metabolismo
3.
Theor Appl Genet ; 105(6-7): 890-897, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12582914

RESUMO

A major QTL for P uptake had previously been mapped to a 13-cM marker interval on the long arm of chromosome 12. To map that major QTL with higher precision and certainty, a secondary mapping population was developed by backcrossing a near-isogenic line containing the QTL from the donor parent to the recurrent parent of low P uptake. Two different mapping strategies have been followed in this study. A conventional QTL mapping approach was based on individual F(2) RFLP data and the phenotypic evaluation of family means in the F(3). The second strategy employed a substitution-mapping approach. Phenotypic and marker data were obtained for 160 F(3) individuals of six highly informative families that differed in the size of donor chromosomal segments in the region of the putative QTL. QTL mapping showed that close to 80% of the variation between families was due to a single QTL, hereafter referred to as Pup1 (Phosphorus uptake 1). Pup1 was placed in a 3-cM interval flanked by markers S14025 and S13126, which is within 1 cM of the position identified in the original QTL mapping experiment. Other chromosomal regions and epistatic effects were not significant. Substitution mapping revealed that Pup1 co-segregated with marker S13126 and that the flanking markers, S14025 and S13752, were outside the interval containing Pup1. The two mapping strategies therefore yielded almost identical results and, in combining the advantages of both, Pup1 could be mapped with high certainty. The QTL mapping appoach showed that the phenotypic variation between families was due to only one QTL without any additional epistacic interactions, whereas the advantage of substitution mapping was to place clearly defined borders around the QTL.

4.
J Exp Bot ; 52(361): 1703-10, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11479336

RESUMO

Root hairs substantially increase the surface area of plant roots with positive effects for phosphorus (P) uptake, but the ability of peanuts to form root hairs has been questioned. The aim was to examine hair development on roots and gynophores of a variety of peanut genotypes and to relate genotypic differences in hair formation to differences in P uptake. Five out of eighteen genotypes completely lacked hairs on both organs whereas others consistently developed hairs on roots and gynophores, although with considerable variation in hair density. The ability to form root hairs as well as root hair density concurred with the presence and density of hairs on gynophores, suggesting a possible connection between both developmental processes. The contribution of root hairs to P uptake was studied in three genotypes differing in hair density. The final amount of P taken up by roots did not differ between genotypes but two distinct P uptake strategies could be identified. The genotype lacking root hairs maintained P uptake due to the development of a large root system whereas densely covered roots of genotype 'Wasedairyu' were three times as efficient in extracting P from a P-deficient soil. Furthermore P uptake through gynophores contributed about 20% to the total P uptake of Wasedairyu but only insignificant amounts to other genotypes. The ability to form hairs on roots and gynophores can therefore be seen as an adaptation to low P availability and if combined with a large root system, could substantially increase the tolerance of peanuts to P deficiency.


Assuntos
Arachis/genética , Arachis/metabolismo , Fósforo/metabolismo , Arachis/citologia , Arachis/crescimento & desenvolvimento , Fertilizantes , Genótipo , Morfogênese , Fenótipo , Fósforo/farmacologia , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/citologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA