Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11455, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075083

RESUMO

Warm mix asphalt (WMA) is gaining increased attention in the asphalt paving industry as an eco-friendly and sustainable technology. WMA technologies are favorable in producing asphalt mixtures at temperatures 20-60 °C lower in comparison to conventional hot mix asphalt. This saves non-renewable fossil fuels, reduces energy consumption, and minimizes vapors and greenhouse gas emissions in the production, placement and conservation processes of asphalt mixtures. At the same time, this temperature reduction must not reduce the performance of asphalt pavements in-field. Low aging resistance, high moisture susceptibility, and low durability are generally seen as substantial drawbacks of WMA, which can lead to inferior pavement performance, and increased maintenance costs. This is partly due to the fact that low production temperature may increase the amount of water molecules trapped in the asphalt mixture. As a potential remedy, here we use fumed silica nanoparticles (FSN) have shown excellent potential in enhancing moisture and aging susceptibility of asphalt binders. In this study, asphalt binder modification by means of FSN was investigated, considering the effects of short-term and long-term aging on the rheological, thermal, and microstructural binder properties. This research paves the way for optimizing WMA by nanoparticles to present enhanced green asphalt technology.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670134

RESUMO

In this study, bitumen modified by fumed silica nanoparticles was characterized through dynamic shear rheometer tests, scanning electron microscopy, and Fourier transform infrared spectroscopy. The fumed silica nanoparticles were used in three different ratios, i.e., 0.1, 0.2 and 0.3 wt.-% of bitumen. Specifically, the modified bitumen characteristics were studied after laboratory aging by analyzing the chemical composition and rheological properties. From the determination of oxidation degree and carbonyl index it was found that the resistance of the modified bitumen to ultraviolet aging was improved with the increasing nanoparticle content. In bitumen modified by fumed silica nanoparticles, the nanoparticles were well dispersed. Moreover, the results illustrated that the bitumen properties were improved, and the improvement effect of 0.1 wt.-% fumed silica nanoparticles was more distinct than the higher concentrations.

3.
Sci Rep ; 10(1): 11216, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641741

RESUMO

In this study, surface morphology, rheological and chemical properties were investigated of bitumen, which was modified by a composite of clay and fumed silica nanoparticles, and exposed to ultraviolet (UV) aging in laboratory. The volume fraction of the nanoparticles within the binder ranged from 1 to 3%, the temperature range considered was 30 to 70 °C. Surface morphology, rheological and chemical binder properties were analyzed using field emission scanning electron microscopy (FESEM), dynamic shear rheometer (DSR), and Fourier transform infrared (FT-IR) spectroscopy. It was found, that the bitumen modification through clay and fumed silica nanoparticles changed resulting binder properties significantly. The index of carbonyl and oxidation degree decreased, and the clay and fumed silica nanoparticles improved aging resistance to ultraviolet (UV) radiation considerably. The results indicate that the mechanical stability of the modified bitumen is very much driven by the specific concentration of clay and fumed silica nanoparticles.

4.
Materials (Basel) ; 10(7)2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28773100

RESUMO

In this paper, the possibility of improving the global response of asphalt materials for pavement applications through the use of hydrated lime and Electric Arc-Furnace Steel Slag (EAFSS) was investigated. For this purpose, a set of asphalt mortars was prepared by mixing two different asphalt binders with fine granite aggregate together with hydrated lime or EAFSS at three different percentages. Bending Beam Rheometer (BBR) creep tests and Dynamic Shear Rheometer (DSR) complex modulus tests were performed to evaluate the material response both at low and high temperature. Then, the rheological Huet model was fitted to the BBR creep results for estimating the impact of filler content on the model parameters. It was found that an addition of hydrated lime and EAFSS up to 10% and 5%, respectively, results in satisfactory low-temperature performance with a substantial improvement of the high-temperature behavior.

5.
Materials (Basel) ; 7(9): 6254-6280, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28788190

RESUMO

The use of recycled materials in pavement construction has seen, over the years, a significant increase closely associated with substantial economic and environmental benefits. During the past decades, many transportation agencies have evaluated the effect of adding Reclaimed Asphalt Pavement (RAP), and, more recently, Recycled Asphalt Shingles (RAS) on the performance of asphalt pavement, while limits were proposed on the amount of recycled materials which can be used. In this paper, the effect of adding RAP and RAS on the microstructural and low temperature properties of asphalt mixtures is investigated using digital image processing (DIP) and modeling of rheological data obtained with the Bending Beam Rheometer (BBR). Detailed information on the internal microstructure of asphalt mixtures is acquired based on digital images of small beam specimens and numerical estimations of spatial correlation functions. It is found that RAP increases the autocorrelation length (ACL) of the spatial distribution of aggregates, asphalt mastic and air voids phases, while an opposite trend is observed when RAS is included. Analogical and semi empirical models are used to back-calculate binder creep stiffness from mixture experimental data. Differences between back-calculated results and experimental data suggest limited or partial blending between new and aged binder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...