Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6687): 1084-1092, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452066

RESUMO

The idea of guidance toward a target is central to axon pathfinding and brain wiring in general. In this work, we show how several thousand axonal growth cones self-pattern without target-dependent guidance during neural superposition wiring in Drosophila. Ablation of all target lamina neurons or loss of target adhesion prevents the stabilization but not the development of the pattern. Intravital imaging at the spatiotemporal resolution of growth cone dynamics in intact pupae and data-driven dynamics simulations reveal a mechanism by which >30,000 filopodia do not explore potential targets, but instead simultaneously generate and navigate a dynamic filopodial meshwork that steers growth directions. Hence, a guidance mechanism can emerge from the interactions of the axons being guided, suggesting self-organization as a more general feature of brain wiring.


Assuntos
Orientação de Axônios , Drosophila melanogaster , Cones de Crescimento , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Cones de Crescimento/fisiologia , Neurônios/fisiologia , Pseudópodes/fisiologia
2.
Semin Cell Dev Biol ; 133: 10-19, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35397971

RESUMO

Brain development relies on dynamic morphogenesis and interactions of neurons. Filopodia are thin and highly dynamic membrane protrusions that are critically required for neuronal development and neuronal interactions with the environment. Filopodial interactions are typically characterized by non-deterministic dynamics, yet their involvement in developmental processes leads to stereotypic and robust outcomes. Here, we discuss recent advances in our understanding of how filopodial dynamics contribute to neuronal differentiation, migration, axonal and dendritic growth and synapse formation. Many of these advances are brought about by improved methods of live observation in intact developing brains. Recent findings integrate known and novel roles ranging from exploratory sensors and decision-making agents to pools for selection and mechanical functions. Different types of filopodial dynamics thereby reveal non-deterministic subcellular decision-making processes as part of genetically encoded brain development.


Assuntos
Neurogênese , Pseudópodes , Neurogênese/fisiologia , Neurônios , Morfogênese , Encéfalo
3.
J Biol Rhythms ; 35(2): 167-179, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31983261

RESUMO

Aging impairs circadian clock function, leading to disrupted sleep-wake patterns and a reduced capability to adapt to changes in environmental light conditions. This makes shift work or the changing of time zones challenging for the elderly and, importantly, is associated with the development of age-related diseases. However, it is unclear what levels of the clock machinery are affected by aging, which is relevant for the development of targeted interventions. We found that naturally aged mice of >24 months had a reduced rhythm amplitude in behavior compared with young controls (3-6 months). Moreover, the old animals had a strongly reduced ability to adapt to short photoperiods. Recording PER2::LUC protein expression in the suprachiasmatic nucleus revealed no impairment of the rhythms in PER2 protein under the 3 different photoperiods tested (LD: 8:16, 12:12, and 16:8). Thus, we observed a discrepancy between the behavioral phenotype and the molecular clock, and we conclude that the aging-related deficits emerge downstream of the core molecular clock. Since it is known that aging affects several intracellular and membrane components of the central clock cells, it is likely that an impairment of the interaction between the molecular clock and these components is contributing to the deficits in photoperiod adaptation.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Envelhecimento , Relógios Circadianos/genética , Luz , Fotoperíodo , Adaptação Fisiológica/genética , Animais , Relógios Circadianos/fisiologia , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Masculino , Camundongos , Proteínas Circadianas Period/genética , Fatores de Transcrição
4.
PLoS One ; 11(12): e0168954, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28006027

RESUMO

For animals living in temperate latitudes, seasonal changes in day length are an important cue for adaptations of their physiology and behavior to the altered environmental conditions. The suprachiasmatic nucleus (SCN) is known as the central circadian clock in mammals, but may also play an important role in adaptations to different photoperiods. The SCN receives direct light input from the retina and is able to encode day-length by approximating the waveform of the electrical activity rhythm to the duration of daylight. Changing the overall waveform requires a reorganization of the neuronal network within the SCN with a change in the degree of synchrony between the neurons; however, the underlying mechanisms are yet unknown. In the present study we used PER2::LUC bioluminescence imaging in cultured SCN slices to characterize network dynamics on the single-cell level and we aimed to provide evidence for a role of modulations in coupling strength in the photoperiodic-induced phase dispersal. Exposure to long photoperiod (LP) induced a larger distribution of peak times of the single-cell PER2::LUC rhythms in the anterior SCN, compared to short photoperiod. Interestingly, the cycle-to-cycle variability in single-cell period of PER2::LUC rhythms is also higher in the anterior SCN in LP, and is positively correlated with peak time dispersal. Applying a new, impartial community detection method on the time series data of the PER2::LUC rhythm revealed two clusters of cells with a specific spatial distribution, which we define as dorsolateral and ventromedial SCN. Post hoc analysis of rhythm characteristics of these clusters showed larger cycle-to-cycle single-cell period variability in the dorsolateral compared to the ventromedial cluster in the anterior SCN. We conclude that a change in coupling strength within the SCN network is a plausible explanation to the observed changes in single-cell period variability, which can contribute to the photoperiod-induced phase distribution.


Assuntos
Ritmo Circadiano , Fotoperíodo , Núcleo Supraquiasmático/fisiologia , Adaptação Fisiológica , Animais , Medições Luminescentes , Masculino , Camundongos , Rede Nervosa , Núcleo Supraquiasmático/metabolismo
5.
J Matern Fetal Neonatal Med ; 28(11): 1302-1307, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25109356

RESUMO

OBJECTIVE: We evaluated the ultrasound appearance of brain volume and cortical development in fetuses with early growth restriction and placental insufficiency. METHODS: We examined a cohort of 20 fetuses with severe intrauterine growth restriction (IUGR) and evidence of placental insufficiency by three-dimensional (3D) ultrasound between 24 and 34 weeks. We graded cortical development and measured the supratentorial intracranial volume. The cortical grading and volume were compared to data obtained from a reference population of 28 adequate for gestational age (AGA) fetuses. RESULTS: Ultrasound examinations were performed in 20 fetuses with IUGR. The biometry and brain volume were significantly reduced in IUGR fetuses. There was evidence of accelerated cortical development in IUGR fetuses. CONCLUSION: This study confirms that the smaller brain volume in IUGR fetuses, with normal or accelerated cortical maturation as previously depicted with postnatal MRI examination, can be demonstrated by prenatal 3D ultrasound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...