Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 13(1): 8, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127758

RESUMO

BACKGROUND: Skeletal muscle development and regeneration depend on cellular fusion of myogenic progenitors to generate multinucleated myofibers. These progenitors utilize two muscle-specific fusogens, Myomaker and Myomerger, which function by remodeling cell membranes to fuse to each other or to existing myofibers. Myomaker and Myomerger expression is restricted to differentiating progenitor cells as they are not detected in adult myofibers. However, Myomaker remains expressed in myofibers from mice with muscular dystrophy. Ablation of Myomaker from dystrophic myofibers results in reduced membrane damage, leading to a model where persistent fusogen expression in myofibers, in contrast to myoblasts, is harmful. METHODS: Dox-inducible transgenic mice were developed to ectopically express Myomaker or Myomerger in the myofiber compartment of skeletal muscle. We quantified indices of myofiber membrane damage, such as serum creatine kinase and IgM+ myofibers, and assessed general muscle histology, including central nucleation, myofiber size, and fibrosis. RESULTS: Myomaker or Myomerger expression in myofibers independently caused membrane damage at acute time points. This damage led to muscle pathology, manifesting with centrally nucleated myofibers and muscle atrophy. Dual expression of both Myomaker and Myomerger in myofibers exacerbated several aspects of muscle pathology compared to expression of either fusogen by itself. CONCLUSIONS: These data reveal that while myofibers can tolerate some level of Myomaker and Myomerger, expression of a single fusogen above a threshold or co-expression of both fusogens is damaging to myofibers. These results explain the paradigm that their expression in myofibers can have deleterious consequences in muscle pathologies and highlight the need for their highly restricted expression during myogenesis and fusion.


Assuntos
Proteínas de Membrana , Proteínas Musculares , Camundongos , Animais , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Camundongos Transgênicos , Desenvolvimento Muscular/fisiologia
2.
Nat Commun ; 11(1): 4158, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855417

RESUMO

Visceral organs, such as the lungs, stomach and liver, are derived from the fetal foregut through a series of inductive interactions between the definitive endoderm (DE) and the surrounding splanchnic mesoderm (SM). While DE patterning is fairly well studied, the paracrine signaling controlling SM regionalization and how this is coordinated with epithelial identity is obscure. Here, we use single cell transcriptomics to generate a high-resolution cell state map of the embryonic mouse foregut. This identifies a diversity of SM cell types that develop in close register with the organ-specific epithelium. We infer a spatiotemporal signaling network of endoderm-mesoderm interactions that orchestrate foregut organogenesis. We validate key predictions with mouse genetics, showing the importance of endoderm-derived signals in mesoderm patterning. Finally, leveraging these signaling interactions, we generate different SM subtypes from human pluripotent stem cells (hPSCs), which previously have been elusive. The single cell data can be explored at: https://research.cchmc.org/ZornLab-singlecell .


Assuntos
Sistema Digestório/metabolismo , Endoderma/metabolismo , Redes Reguladoras de Genes , Mesoderma/metabolismo , Organogênese/genética , Transdução de Sinais/genética , Animais , Linhagem da Célula/genética , Sistema Digestório/citologia , Sistema Digestório/embriologia , Endoderma/citologia , Endoderma/embriologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Internet , Mesoderma/citologia , Mesoderma/embriologia , Camundongos Endogâmicos C57BL , Análise de Célula Única/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Hypertension ; 75(2): 569-579, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31865781

RESUMO

Cascade-specific termination of G protein signaling is catalyzed by the RGS (regulator of G protein signaling) family members, including RGS2. Angiotensin, vasopressin, and endothelin are implicated in preeclampsia, and RGS2 is known to inhibit G protein cascades activated by these hormones. Mutations in RGS2 are associated with human hypertension and increased risk of developing preeclampsia and its sequelae. RGS family members are known to influence maternal vascular function, but the role of RGS2 within the placenta has not been explored. Here, we hypothesized that reduced expression of RGS2 within the placenta represents a risk factor for the development of preeclampsia. Although cAMP/CREB signaling was enriched in placentas from human pregnancies affected by preeclampsia compared with clinically matched controls and RGS2 is known to be a CREB-responsive gene, RGS2 mRNA was reduced in placentas from pregnancies affected by preeclampsia. Experimentally reducing Rgs2 expression within the feto-placental unit was sufficient to induce preeclampsia-like phenotypes in pregnant wild-type C57BL/6J mice. Stimulation of RGS2 transcription within immortalized human HTR8/SVneo trophoblasts by cAMP/CREB signaling was discovered to be dependent on the activity of histone deacetylase activity, and more specifically, HDAC9 (histone deacetylase-9), and HDAC9 expression was reduced in placentas from human pregnancies affected by preeclampsia. We conclude that reduced expression of RGS2 within the placenta may mechanistically contribute to preeclampsia. More generally, this work identifies RGS2 as an HDAC9-dependent CREB-responsive gene, which may contribute to reduced RGS2 expression in placenta during preeclampsia.


Assuntos
Regulação da Expressão Gênica , Placenta/metabolismo , Pré-Eclâmpsia/genética , Prenhez , Proteínas RGS/genética , RNA Mensageiro/biossíntese , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pré-Eclâmpsia/metabolismo , Gravidez , Proteínas RGS/biossíntese , RNA Mensageiro/genética , Transdução de Sinais
4.
JCI Insight ; 3(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875318

RESUMO

The WNT pathway has become an attractive target for skeletal therapies. High-bone-mass phenotypes in patients with loss-of-function mutations in the LRP5/6 inhibitor Sost (sclerosteosis), or in its downstream enhancer region (van Buchem disease), highlight the utility of targeting Sost/sclerostin to improve bone properties. Sclerostin-neutralizing antibody is highly osteoanabolic in animal models and in human clinical trials, but antibody-based inhibition of another potent LRP5/6 antagonist, Dkk1, is largely inefficacious for building bone in the unperturbed adult skeleton. Here, we show that conditional deletion of Dkk1 from bone also has negligible effects on bone mass. Dkk1 inhibition increases Sost expression, suggesting a potential compensatory mechanism that might explain why Dkk1 suppression lacks anabolic action. To test this concept, we deleted Sost from osteocytes in, or administered sclerostin neutralizing antibody to, mice with a Dkk1-deficient skeleton. A robust anabolic response to Dkk1 deletion was manifest only when Sost/sclerostin was impaired. Whole-body DXA scans, µCT measurements of the femur and spine, histomorphometric measures of femoral bone formation rates, and biomechanical properties of whole bones confirmed the anabolic potential of Dkk1 inhibition in the absence of sclerostin. Further, combined administration of sclerostin and Dkk1 antibody in WT mice produced a synergistic effect on bone gain that greatly exceeded individual or additive effects of the therapies, confirming the therapeutic potential of inhibiting multiple WNT antagonists for skeletal health. In conclusion, the osteoanabolic effects of Dkk1 inhibition can be realized if sclerostin upregulation is prevented. Anabolic therapies for patients with low bone mass might benefit from a strategy that accounts for the compensatory milieu of WNT inhibitors in bone tissue.


Assuntos
Anabolizantes/administração & dosagem , Glicoproteínas/antagonistas & inibidores , Hiperostose/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Sindactilia/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos Neutralizantes/administração & dosagem , Proteínas Morfogenéticas Ósseas/genética , Modelos Animais de Doenças , Feminino , Fêmur/citologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Marcadores Genéticos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Hiperostose/diagnóstico por imagem , Hiperostose/genética , Hiperostose/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação com Perda de Função , Masculino , Camundongos , Osteócitos , Coluna Vertebral/citologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia , Sindactilia/diagnóstico por imagem , Sindactilia/genética , Sindactilia/patologia , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Microtomografia por Raio-X
5.
Endocrinology ; 158(3): 470-476, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28005411

RESUMO

Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression.


Assuntos
Líquido Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatos/metabolismo , Animais , Densidade Óssea , Raquitismo Hipofosfatêmico Familiar/sangue , Feminino , Fêmur/crescimento & desenvolvimento , Fator de Crescimento de Fibroblastos 23 , Masculino , Camundongos , Camundongos Knockout , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...