Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 6: 61-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563237

RESUMO

PURPOSE: Epoprostenol, used for the treatment of pulmonary arterial hypertension (PAH), has a number of limitations related to its short half-life in aqueous solution. The aim of this study was to evaluate the stability and microbiological properties of a new formulation, namely epoprostenol sodium with arginine and mannitol excipients (epoprostenol AM; Veletri®; Actelion Pharmaceuticals Ltd, Allschwil, Switzerland). METHODS: Stability and microbiological properties of epoprostenol AM were investigated at 5°C, 25°C, and 30°C over a range of concentrations (3000-30,000 ng/mL) when reconstituted and immediately diluted with sterile water for injection (SWI) or sterile saline (sodium chloride 0.9%) for injection (SSI). Stability (change in potency over time) for up to 72 hours at 25°C and 30°C was measured immediately following dilution and after storage at 5°C. Shelf-life was assessed by determining the maintenance of potency over time relative to initial potency. For microbiological testing, diluted samples of epoprostenol AM were inoculated with a range of bacteria, yeasts, and molds for up to 14 days at 5°C or 4 days at 25°C. RESULTS: Epoprostenol AM reconstituted and immediately diluted to the required concentration with SWI or SSI was stable for up to 3 days at 25°C and up to 7 days at 5°C depending on the concentration. None of the diluted epoprostenol AM solutions supported microbial growth for any of the six organisms tested for up to 14 days. CONCLUSIONS: Epoprostenol AM has improved thermal stability and does not support the growth of any microorganism tested for up to 14 days. This extended stability under ambient conditions has the potential to improve convenience for patients.


Assuntos
Epoprostenol/química , Epoprostenol/farmacologia , Conservantes Farmacêuticos/farmacologia , Química Farmacêutica , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Hemólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Temperatura
3.
Biochim Biophys Acta ; 1726(2): 138-51, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16023295

RESUMO

Differential scanning calorimetry was used to identify the thermal stability profile of the replication deficient and protein IX deleted recombinant adenovirus type 5 that contains the p53 transgene (rAd/p53) in phosphate buffered saline (vPBS) or 10% glycerol (TRIS/phosphate buffer). The wildtype adenovirus (Ad/WT) and purified hexon protein (major capsid protein) were also evaluated in 10% glycerol (TRIS/phosphate buffer) as controls. The thermal profile of rAd/p53 revealed three endothermic transitions (T1, T2 and T3) occurring between 25 degrees C and 90 degrees C. T1, which occurred at 46.7 degrees C in vPBS and 49.4 degrees C in TRIS/PO4 10% glycerol buffer, was irreversible following repeated scanning and attributed to the degradation of the intact vector. The latter two endothermic transitions, T2 and T3, occurring at 69 degrees C and 78 degrees C, respectively, corresponded with the two transitions of purified hexon in temperature and amount of heat absorbed. The thermal profile of Ad/WT revealed four endothermic transitions at 51.5 degrees C (T1), 70.5 degrees C (T2A), 73.6 degrees C (T2B), and 77.4 degrees C (T3). The higher temperature of degradation as well as additional transition was attributed to the presence of protein IX associated with the hexon. The positions and excess molar heat capacities of the intact rAds were found to be affected by pH, glycerol, vector concentration and the presence or absence of protein IX in the capsid. Irreversibility of T1 implied that the degradation of the intact virus may follow first-order kinetics. The thermal scan rate dependence of T1 further confirmed that degradation of the intact virus may be first-order. The apparent activation energies for the degradation of the intact vectors were determined from the scan rate dependence of T1 and shown to be affected by protein IX in the capsid and solution conditions. Analysis of rAd samples incubated at 45 degrees C by Field Emission Electron Microscopy (FESEM) confirmed that loss of single particles was first-order. Although aggregates were observed in the samples, degradation appeared to be the dominant reaction leading to disappearance of single virions from the aqueous matrix. Based on thermal and FESEM analysis, an empirical model was proposed that accounted for the disappearance of single rAd particles. At or near T1, degradation of rAd particles followed a unidirectional, pseudo-first order reaction. However, at lower temperatures, disappearance of single virions resulted from competing irreversible degradation and aggregation reactions.


Assuntos
Adenoviridae , Proteínas do Capsídeo/química , Dobramento de Proteína , Proteína Supressora de Tumor p53/química , Soluções Tampão , Calorimetria/métodos , Temperatura Alta , Humanos , Cinética , Desnaturação Proteica , Termodinâmica , Transgenes/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...