Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Contact Dermatitis ; 89(6): 442-452, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700557

RESUMO

BACKGROUND: Allergic contact dermatitis (ACD) is an inflammatory disease with a complex pathophysiology in which epidermal-resident memory CD8+ T (TRM ) cells play a key role. The mechanisms involved in the activation of CD8+ TRM cells during allergic flare-up responses are not understood. METHODS: The expression of CD100 and its ligand Plexin B2 on CD8+ TRM cells and keratinocytes before and after allergen exposure was determined by flow cytometry and RT-qPCR. The role of CD100 in the inflammatory response during the challenge phase of ACD was determined in a model of ACD in CD100 knockout and wild-type mice. RESULTS: We show that CD8+ TRM cells express CD100 during homeostatic conditions and up-regulate it following re-exposure of allergen-experienced skin to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene (DNFB). Furthermore, Plexin B2 is up-regulated on keratinocytes following exposure to some contact allergens. We show that loss of CD100 results in a reduced inflammatory response to DNFB with impaired production of IFNγ, IL-17A, CXCL1, CXCL2, CXCL5, and IL-1ß and decreased recruitment of neutrophils to the epidermis. CONCLUSION: Our study demonstrates that CD100 is expressed on CD8+ TRM cells and is required for full activation of CD8+ TRM cells and the flare-up response of ACD.


Assuntos
Dermatite Alérgica de Contato , Animais , Camundongos , Alérgenos , Dermatite Alérgica de Contato/metabolismo , Dinitrofluorbenzeno/metabolismo , Queratinócitos/metabolismo , Pele
2.
Contact Dermatitis ; 89(5): 323-334, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619972

RESUMO

BACKGROUND: The junctional adhesion molecule-like protein (JAML) plays important roles in wound healing and activation of epidermal γδ T cells in mice. Whether JAML plays a role in contact hypersensitivity (CHS), the animal model of allergic contact dermatitis (ACD), is not known. METHODS: To examine the role of JAML in CHS, we used various mouse models of CHS in JAML knockout (KO) and wild-type (WT) mice. Furthermore, the expression of the JAML ligand coxsackievirus and adenovirus receptor (CXADR) on keratinocytes was accessed in vitro and in vivo. RESULTS: JAML KO mice had a diminished inflammatory response during both the sensitization and elicitation phase of CHS and had reduced numbers of CD8+ and CD4+ T cells in the epidermis. Furthermore, interferon γ (IFNγ), interleukin 1ß (IL-1ß) and CXCL10 production were significantly reduced in JAML KO mice during the elicitation phase. We found that CD8+ T cells express JAML and that JAML is essential for rapid flare-up responses to contact allergens. Finally, we show that keratinocytes up-regulate the JAML ligand CXADR following exposure to contact allergens. CONCLUSION: Our study is the first to show a central role of JAML in CHS and reveals a potential new target for the treatment of ACD in humans.


Assuntos
Linfócitos T CD8-Positivos , Dermatite Alérgica de Contato , Humanos , Camundongos , Animais , Moléculas de Adesão Juncional , Ligantes , Epiderme , Camundongos Knockout , Camundongos Endogâmicos C57BL
3.
Eur J Pharmacol ; 955: 175910, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479017

RESUMO

Previous studies have demonstrated the role of γ-aminobutyric acid type B (GABAB) receptors in skin-related conditions and pain. However, most studies have focused on the main effects of GABAB on the central nervous system. Therefore, this study has aimed to determine the potential topical anti-inflammatory and anti-proliferative effects of baclofen cream in an inflammatory skin disease model. The effects of the baclofen cream were evaluated using acute and chronic models of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mouse ears. Histological and immunohistochemical evaluations were performed using an ear oedema assay. The effect of baclofen on keratinocyte proliferation was assessed in PAM212, the murine keratinocyte cell line. The results demonstrate that a single topical application of 5% baclofen, 7.5% baclofen, and 1% dexamethasone each inhibited acute TPA-induced ear oedema (58.94 ± 6.14%, 47.73 ± 11.26%, and 87.33 ± 4.59%, respectively). These results were confirmed by histological analysis. In the chronic model, baclofen (5%) and dexamethasone (1%) each inhibited ear oedema and the maximum inhibitory effect was reached at the end of the experiment (9th day of TPA application) with a percentage inhibition of 54.60 ± 6.15% for baclofen and 71.68 ± 3.45% for dexamethasone, when compared to the vehicle. These results were confirmed by histological analysis. Baclofen and dexamethasone also reduced proliferating cell nuclear antigen expression by 62.01 ± 6.65% and 70.42 ± 6.11%, respectively. However, baclofen did not inhibit keratinocyte proliferation in PAM212 cells. In conclusion, these results demonstrate that baclofen exhibits notable topical antiproliferative and anti-inflammatory properties and could be a potential therapeutic alternative for treating inflammatory and proliferative skin diseases.


Assuntos
Dermatite , Dermatopatias , Animais , Camundongos , Baclofeno/farmacologia , Baclofeno/uso terapêutico , Agonistas dos Receptores de GABA-B/farmacologia , Agonistas dos Receptores de GABA-B/uso terapêutico , Dermatopatias/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Inflamação/tratamento farmacológico , Dexametasona/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Acetato de Tetradecanoilforbol/uso terapêutico
4.
Explor Immunol ; 2(1): 79-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480230

RESUMO

Antitumor immunity relies on the ability of T cells to recognize and kill tumor targets. γδ T cells are a specialized subset of T cells that predominantly localizes to non-lymphoid tissue such as the skin, gut, and lung where they are actively involved in tumor immunosurveillance. γδ T cells respond to self-stress ligands that are increased on many tumor cells, and these interactions provide costimulatory signals that promote their activation and cytotoxicity. This review will cover costimulatory molecules that are known to be critical for the function of γδ T cells with a specific focus on mouse dendritic epidermal T cells (DETC). DETC are a prototypic tissue-resident γδ T cell population with known roles in antitumor immunity and are therefore useful for identifying mechanisms that may control activation of other γδ T cell subsets within non-lymphoid tissues. This review concludes with a brief discussion on how γδ T cell costimulatory molecules can be targeted for improved cancer immunotherapy.

5.
J Leukoc Biol ; 111(1): 135-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33847413

RESUMO

Tissue-resident γδ T cells form the first line of defense at barrier surfaces where they survey host tissue for signs of stress or damage. Following recognition of injury, γδ T cells play a crucial role in the wound-healing response through the production of growth factors and cytokines that promote proliferation in surrounding epithelial cells. To initiate this response, γδ T cells require interactions with a variety of epithelial-expressed costimulatory molecules in addition to primary signaling through their TCR. In the epidermis these signals include the coxsackie and adenovirus receptor (CAR), histocompatibility antigen 60c (H60c), and plexin B2, which interact with γδ T cell-expressed junctional adhesion molecule-like protein (JAML), NKG2D, and CD100, respectively. Here we identify heat shock protein family A member 8 (Hspa8) and ICAM-1 as two additional keratinocyte-expressed costimulatory molecules for epidermal resident γδ T cells (termed DETC). These molecules were rapidly up-regulated in the epidermis following wounding in both mouse and human tissue. Both Hspa8 and ICAM-1 had a costimulatory effect on DETC, inducing proliferation, CD25 up-regulation, and IL-2 production. We also provide evidence that DETC can be activated through the potential ICAM-1 and Hspa8 receptors LFA-1 and CD316. Finally, knockdown of Hspa8 in keratinocytes reduced their ability to activate DETC in culture and ICAM-1-/- mice exhibited impaired rates of healing in skin-organ culture suggesting a role for these proteins in the DETC-mediated damage response. Together with previous work on CAR, H60c, and plexin B2, these results add to a picture of a complex keratinocyte wound signature that is required for efficient DETC activation.


Assuntos
Proteínas de Choque Térmico HSC70/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Proliferação de Células , Células Cultivadas , Humanos , Queratinócitos/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T/citologia
6.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34427588

RESUMO

T cells are critical mediators of antitumor immunity and a major target for cancer immunotherapy. Antibody blockade of inhibitory receptors such as PD-1 can partially restore the activity of tumor-infiltrating lymphocytes (TILs). However, the activation signals required to promote TIL responses are less well characterized. Here we show that the antitumor activity of CD8 and γδ TIL is supported by interactions between junctional adhesion molecule-like protein (JAML) on T cells and its ligand coxsackie and adenovirus receptor (CXADR) within tumor tissue. Loss of JAML through knockout in mice resulted in accelerated tumor growth that was associated with an impaired γδ TIL response and increased CD8 TIL dysfunction. In mouse tumor models, therapeutic treatment with an agonistic anti-JAML antibody inhibited tumor growth, improved γδ TIL activation, decreased markers of CD8 TIL dysfunction, and significantly improved response to anti-PD-1 checkpoint blockade. Thus, JAML represents a novel therapeutic target to enhance both CD8 and γδ TIL immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Imunoterapia/métodos , Melanoma Experimental/patologia , Animais , Linfócitos T CD8-Positivos/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Melanoma/genética , Melanoma/mortalidade , Melanoma/patologia , Melanoma Experimental/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/mortalidade , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia
7.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792560

RESUMO

Adoptive T cell therapies (ACTs) hold great promise in cancer treatment, but low overall response rates in patients with solid tumors underscore remaining challenges in realizing the potential of this cellular immunotherapy approach. Promoting CD8+ T cell adaptation to tissue residency represents an underutilized but promising strategy to improve tumor-infiltrating lymphocyte (TIL) function. Here, we report that deletion of the HIF negative regulator von Hippel-Lindau (VHL) in CD8+ T cells induced HIF-1α/HIF-2α-dependent differentiation of tissue-resident memory-like (Trm-like) TILs in mouse models of malignancy. VHL-deficient TILs accumulated in tumors and exhibited a core Trm signature despite an exhaustion-associated phenotype, which led to retained polyfunctionality and response to αPD-1 immunotherapy, resulting in tumor eradication and protective tissue-resident memory. VHL deficiency similarly facilitated enhanced accumulation of chimeric antigen receptor (CAR) T cells with a Trm-like phenotype in tumors. Thus, HIF activity in CD8+ TILs promotes accumulation and antitumor activity, providing a new strategy to enhance the efficacy of ACTs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Imunidade Celular , Memória Imunológica , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Experimentais/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/imunologia
9.
ACS Appl Bio Mater ; 3(8): 4779-4788, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32984778

RESUMO

Chronic wounds represent a growing clinical problem for which limited treatment strategies exist. Defects in immune cell-mediated healing play an important role in chronic wound development, presenting an attractive clinical target in the treatment of chronic wounds. However, efforts to improve healing through the application of growth factors and cytokines have been limited by the rapid degradation and diffusion of these molecules in the wound environment. In this study we sought to overcome the challenge of rapid diffusion through the development of a hydrogel delivery system in which protein cargo can be released into the wound environment at a constant and tunable rate. This system was used to deliver the intercellular adhesion molecule-1 (ICAM-1) in order to target endogenous cells upstream of growth factor and cytokine production and circumvent the issue of their rapid degradation. We demonstrated that our delivery system was able to release cargo at different and highly controllable rates and thereby improved cargo retention in the wound environment. Additionally, treatment with ICAM-1 in the delivery system improved healing in both ICAM-1-deficient mice and an aged mouse model of delayed healing, highlighting a potential clinical benefit for this protein in the treatment of chronic wounds.

10.
Front Immunol ; 11: 1656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849572

RESUMO

Innate and adaptive immune systems continuously interchange information and orchestrate their immune responses to protect the host. γδT cells play crucial roles, as they incorporate both innate and adaptive immune characteristics. Dendritic epidermal T cells (DETC) are specialized γδT cells, which are uniquely positioned to rapidly respond to skin wounds and infections. Their elongated dendrite morphology allows them to be in continuous contact with multiple neighboring keratinocytes and Langerhans cells. Cellular interactions are fundamental to the formation, activation and maintenance of immune cell functions during steady state and pathology. Recent technological advances, especially in the field of cellular imaging, have contributed greatly to the characterization of complex cellular interactions in a spatiotemporally resolved manner. In this review, we will highlight the often-underappreciated function of DETC and other γδT cells during steady state and an ongoing immune response. More specifically, we discuss how DETC-precursors are shaped in the fetal thymus during embryogenesis as well as how direct cell-cell interactions of DETC with neighboring epidermal cells shape skin homeostasis and effector functions. Furthermore, we will discuss seminal work and recent discoveries made in the γδT cell field, which have highlighted the importance of γδT cells in the skin, both in humans and mice.


Assuntos
Células Epidérmicas/imunologia , Epiderme/imunologia , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Imunidade Adaptativa , Animais , Comunicação Celular , Microambiente Celular , Desenvolvimento Embrionário , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Humanos , Imunidade Inata , Linfócitos Intraepiteliais/metabolismo , Fenótipo , Transdução de Sinais , Timo/embriologia , Timo/imunologia , Timo/metabolismo
11.
Immunity ; 52(5): 808-824.e7, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433949

RESUMO

Tissue-resident memory CD8+ T cells (Trm) provide host protection through continuous surveillance of non-lymphoid tissues. Using single-cell RNA-sequencing (scRNA-seq) and genetic reporter mice, we identified discrete lineages of intestinal antigen-specific CD8+ T cells, including a Blimp1hiId3lo tissue-resident effector cell population most prominent in the early phase of acute viral and bacterial infections and a molecularly distinct Blimp1loId3hi tissue-resident memory population that subsequently accumulated at later infection time points. These Trm populations exhibited distinct cytokine production, secondary memory potential, and transcriptional programs including differential roles for transcriptional regulators Blimp1, T-bet, Id2, and Id3 in supporting and maintaining intestinal Trm. Extending our analysis to malignant tissue, we also identified discrete populations of effector-like and memory-like CD8+ T cell populations with tissue-resident gene-expression signatures that shared features of terminally exhausted and progenitor-exhausted T cells, respectively. Our findings provide insight into the development and functional heterogeneity of Trm cells, which has implications for enhancing vaccination and immunotherapy approaches.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Imunoterapia/métodos , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/imunologia , Proteína 2 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/imunologia , Proteínas Inibidoras de Diferenciação/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo
12.
Br J Pharmacol ; 177(15): 3535-3551, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32335893

RESUMO

BACKGROUND AND PURPOSE: The entire kallikrein-kinin system is present in the skin, and it is thought to exert a relevant role in cutaneous diseases, including psoriasis. The present study was designed to evaluate the relevance of kinin receptors in the development and progression of a model of psoriasis in mice. EXPERIMENTAL APPROACH: The effects of kinin B1 and B2 receptor knockout and of kinin receptor antagonists (SSR240612C or FR173657) were assessed in a model of psoriasis induced by imiquimod in C57BL/6 mice. Severity of psoriasis was assessed by histological and immunohistochemical assays of skin, along with objective scores based on the clinical psoriasis area and severity index. KEY RESULTS: Both kinin receptors were up-regulated following 6 days of imiquimod treatment. Kinin B1 and B2 receptor deficiency and the use of selective antagonists show morphological and histological improvement of the psoriasis hallmarks. This protective effect was associated with a decrease in undifferentiated and proliferating keratinocytes, decreased cellularity (neutrophils, macrophages, and CD4+ T lymphocytes), reduced γδ T cells, and lower accumulation of IL-17. The lack of B2 receptors resulted in reduced CD8+ T cells in the psoriatic skin. Relevantly, blocking kinin receptors reflected the improvement of psoriasis disease in the well-being behaviour of the mice. CONCLUSIONS AND IMPLICATIONS: Kinins exerted critical roles in imiquimod-induced psoriasis. Both B1 and B2 kinin receptors exacerbated the disease, influencing keratinocyte proliferation and immunopathology. Antagonists of one or even both kinin receptors might constitute a new strategy for the clinical treatment of psoriasis.


Assuntos
Cininas , Psoríase , Animais , Linfócitos T CD8-Positivos , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/tratamento farmacológico , Receptor B1 da Bradicinina , Receptor B2 da Bradicinina
13.
Cells ; 9(4)2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331225

RESUMO

Wendy Havran, Professor and Associate Dean of Graduate Studies at Scripps Research, passed away on January 20th, 2020 following a heart attack [...].

14.
Cells ; 9(3)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168884

RESUMO

While forming a minor population in the blood and lymphoid compartments, T cells are significantly enriched within barrier tissues. In addition to providing protection against infection, these tissue-resident T cells play critical roles in tissue homeostasis and repair. T cells in the epidermis and intestinal epithelium produce growth factors and cytokines that are important for the normal turnover and maintenance of surrounding epithelial cells and are additionally required for the efficient recognition of, and response to, tissue damage. A role for tissue-resident T cells is emerging outside of the traditional barrier tissues as well, with recent research indicating that adipose tissue-resident T cells are required for the normal maintenance and function of the adipose tissue compartment. Here we review the functions of tissue-resident T cells in the epidermis, intestinal epithelium, and adipose tissue, and compare the mechanisms of their activation between these sites.


Assuntos
Células Epiteliais/metabolismo , Linfócitos T/metabolismo , Cicatrização/imunologia , Humanos , Transdução de Sinais
15.
Immunology ; 157(1): 3-12, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30897205

RESUMO

In response to infection, naive CD4+ T-cells proliferate and differentiate into several possible effector subsets, including conventional T helper effector cells (TH 1, TH 2, TH 17), T regulatory cells (Treg ) and T follicular helper cells (TFH ). Once infection is cleared, a small population of long-lived memory cells remains that mediate immune defenses against reinfection. Memory T lymphocytes have classically been categorized into central memory cell (TCM ) and effector memory cell (TEM ) subsets, both of which circulate between blood, secondary lymphoid organs and in some cases non-lymphoid tissues. A third subset of memory cells, referred to as tissue-resident memory cells (TRM ), resides in tissues without recirculation, serving as 'first line' of defense at barrier sites, such as skin, lung and intestinal mucosa, and augmenting innate immunity in the earliest phases of reinfection and recruiting circulating CD4+ and CD8+ T-cells. The presence of multiple CD4+ T helper subsets has complicated studies of CD4+ memory T-cell differentiation, and the mediators required to support their function. In this review, we summarize recent investigations into the origins of CD4+ memory T-cell populations and discuss studies addressing CD4+  TRM differentiation in barrier tissues.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Mucosa Intestinal/imunologia , Pulmão/imunologia , Pele/imunologia , Animais , Circulação Sanguínea , Diferenciação Celular , Homeostase , Humanos , Imunidade Inata , Memória Imunológica , Ativação Linfocitária
16.
Front Immunol ; 9: 731, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686687

RESUMO

Epithelial tissues line the body providing a protective barrier from the external environment. Maintenance of these epithelial barrier tissues critically relies on the presence of a functional resident T cell population. In some tissues, the resident T cell population is exclusively comprised of γδ T cells, while in others γδ T cells are found together with αß T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not only in the maintenance of the epithelium, but are also central to the repair process following damage from environmental and pathogenic insults. Key to their function is the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies on multiple receptor-ligand interactions through both the T cell receptor and accessory molecules leading to temporal and spatial regulation of cytokine, chemokine, growth factor, and extracellular matrix protein production. As antigens that activate epithelial γδ T cells are largely unknown and many classical costimulatory molecules and coreceptors are not used by these cells, efforts have focused on identification of novel coreceptors and ligands that mediate pivotal interactions between γδ T cells and their neighbors. In this review, we discuss recent advances in the understanding of functions for these coreceptors and their ligands in epithelial maintenance and repair processes.


Assuntos
Epitélio/fisiologia , Linfócitos Intraepiteliais/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Animais , Adesão Celular , Movimento Celular , Humanos , Ligantes
17.
Elife ; 62017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29199946

RESUMO

The cutaneous wound-healing program is a product of a complex interplay among diverse cell types within the skin. One fundamental process that is mediated by these reciprocal interactions is the mobilization of local stem cell pools to promote tissue regeneration and repair. Using the ablation of epidermal caspase-8 as a model of wound healing in Mus musculus, we analyzed the signaling components responsible for epithelial stem cell proliferation. We found that IL-1α and IL-7 secreted from keratinocytes work in tandem to expand the activated population of resident epidermal γδT-cells. A downstream effect of activated γδT-cells is the preferential proliferation of hair follicle stem cells. By contrast, IL-1α-dependent stimulation of dermal fibroblasts optimally stimulates epidermal stem cell proliferation. These findings provide new mechanistic insights into the regulation and function of epidermal cell-immune cell interactions and into how components that are classically associated with inflammation can differentially influence distinct stem cell niches within a tissue.


Assuntos
Proliferação de Células , Folículo Piloso/citologia , Interleucina-1alfa/metabolismo , Linfócitos Intraepiteliais/fisiologia , Células-Tronco/fisiologia , Cicatrização , Animais , Interleucina-7/metabolismo , Ativação Linfocitária , Camundongos , Modelos Animais
18.
Nat Rev Immunol ; 17(12): 733-745, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28920588

RESUMO

Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.


Assuntos
Homeostase , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Animais , Biomarcadores , Butirofilinas/genética , Butirofilinas/metabolismo , Diferenciação Celular , Epitélio/microbiologia , Epitélio/fisiologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Linfócitos Intraepiteliais/citologia , Células T Invariantes Associadas à Mucosa/citologia , Transdução de Sinais
19.
Cell Immunol ; 296(1): 57-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25958272

RESUMO

Immunology has traditionally focused on the lymphocytes circulating among primary lymphoid organs while the large reservoir of tissue-resident T cells have received relatively less attention. In epithelia, these populations are comprised of significant, and sometimes exclusive, subsets of γδ T cells that are highly specialized in promoting tissue homeostasis. As the epithelial layers of the skin and gut are permanently exposed to the environment, they are continually subject to injury and therefore require highly efficient repair processes to maintain barrier functions. Here, we review the role of γδ T cells in promoting wound healing, a critical and complex process occurring in the skin and other barrier sites.


Assuntos
Epitélio/imunologia , Trato Gastrointestinal/lesões , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Pele/lesões , Linfócitos T/imunologia , Cicatrização/imunologia , Animais , Trato Gastrointestinal/imunologia , Humanos , Camundongos , Mucosa/imunologia , Transdução de Sinais/imunologia , Pele/imunologia
20.
J Invest Dermatol ; 135(5): 1311-1319, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25634359

RESUMO

The interaction between keratinocytes (KCs) and skin-resident immune cells has an important role in induction of contact hypersensitivity. A specific subset of γδ T cells termed dendritic epidermal T cells (DETCs) are located in mouse epidermis, and we have recently shown that DETCs become activated and produce IL-17 in an IL-1ß-dependent manner during contact hypersensitivity. Various receptors on DETCs, including NKG2D, are involved in DETC responses against tumors and during wound healing. The ligands for NKG2D (NKG2DL) are stress-induced proteins such as mouse UL16-binding protein-like transcript 1 (Mult-1), histocompatibility 60 (H60), and retinoic acid early inducible-1 (Rae-1) in mice and major histocompatibility complex (MHC) class I-chain-related A (MICA), MHC class I-chain-related B, and UL16-binding protein in humans. Here, we show that allergens upregulate expression of the NKG2DL Mult-1, H60, and Rae-1 in cultured mouse KCs and of MICA in primary human KCs. We demonstrate that Mult-1 is expressed in mouse skin exposed to allergen. Furthermore, we find that the vast majority of DETCs in murine epidermis and skin-homing cutaneous lymphocyte-associated antigen positive γδ T cells in humans express NKG2D. Finally, we demonstrate that blocking of NKG2D partially inhibits allergen-induced DETC activation. These findings demonstrate that NKG2D and NKG2DL are involved in allergen-induced activation of DETCs and indicate that the NKG2D/NKG2DL pathway might be a potential target for treatment of contact hypersensitivity.


Assuntos
Dermatite de Contato/metabolismo , Dermatite de Contato/patologia , Células de Langerhans/metabolismo , Células de Langerhans/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Alérgenos/efeitos adversos , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Células Cultivadas , Dermatite de Contato/etiologia , Modelos Animais de Doenças , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Subfamília K de Receptores Semelhantes a Lectina de Células NK/efeitos dos fármacos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...