Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326559

RESUMO

Liver dysfunction during sepsis is an independent risk factor leading to increased mortality rates. Specifically, dysregulation of hepatic biotransformation capacity, especially of the cytochrome P450 (CYP) system, represents an important distress factor during host response. The activity of the conserved stress enzyme sphingomyelin phosphodiesterase 1 (SMPD1) has been shown to be elevated in sepsis patients, allowing for risk stratification. Therefore, the aim of the present study was to investigate whether SMPD1 activity has an impact on expression and activity of different hepatic CYP enzymes using an animal model of polymicrobial sepsis. Polymicrobial sepsis was induced in SMPD1 wild-type and heterozygous mice and hepatic ceramide content as well as CYP mRNA, protein expression and enzyme activities were assessed at two different time points, at 24 h, representing the acute phase, and at 28 days, representing the post-acute phase of host response. In the acute phase of sepsis, SMPD1+/+ mice showed an increased hepatic C16- as well as C18-ceramide content. In addition, a downregulation of CYP expression and activities was detected. In SMPD1+/- mice, however, no noticeable changes of ceramide content and CYP expression and activities during sepsis could be observed. After 28 days, CYP expression and activities were normalized again in all study groups, whereas mRNA expression remained downregulated in SMPD+/+ animals. In conclusion, partial genetic inhibition of SMPD1 stabilizes hepatic ceramide content and improves hepatic monooxygenase function in the acute phase of polymicrobial sepsis. Since we were also able to show that the functional inhibitor of SMPD1, desipramine, ameliorates downregulation of CYP mRNA expression and activities in the acute phase of sepsis in wild-type mice, SMPD1 might be an interesting pharmacological target, which should be further investigated.


Assuntos
Biotransformação/efeitos dos fármacos , Ceramidas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Sepse/metabolismo , Sepse/microbiologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Biomarcadores , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno , Isoenzimas , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Sepse/complicações , Sepse/genética
2.
Sci Rep ; 7(1): 12348, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28955042

RESUMO

The molecular mechanisms of maladaptive response in liver tissue with respect to the acute and post-acute phase of sepsis are not yet fully understood. Long-term sepsis survivors might develop hepatocellular/hepatobiliary injury and fibrosis. Here, we demonstrate that acid sphingomyelinase, an important regulator of hepatocyte apoptosis and hepatic stellate cell (HSC) activation, is linked to the promotion of liver dysfunction in the acute phase of sepsis as well as to fibrogenesis in the long-term. In both phases, we observed a beneficial effect of partial genetic sphingomyelinase deficiency in heterozygous animals (smpd1+/-) on oxidative stress levels, hepatobiliary function, macrophage infiltration and on HSC activation. Strikingly, similar to heterozygote expression of SMPD1, either preventative (p-smpd1+/+) or therapeutic (t-smpd1+/+) pharmacological treatment strategies with desipramine - a functional inhibitor of acid sphingomyelinase (FIASMA) - significantly improved liver function and survival. The inhibition of sphingomyelinase exhibited a protective effect on liver function in the acute-phase, and the reduction of HSC activation diminished development of sepsis-associated liver fibrosis in the post-acute phase of sepsis. In summary, targeting sphingomyelinase with FDA-approved drugs is a novel promising strategy to overcome sepsis-induced liver dysfunction.


Assuntos
Desipramina/farmacologia , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Sepse/complicações , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Desipramina/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Fígado/citologia , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...