Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Menopause ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688467

RESUMO

OBJECTIVE: Ovarian removal prior to spontaneous/natural menopause (SM) is associated with increased risk of late life dementias including Alzheimer's disease. This increased risk may be related to the sudden and early loss of endogenous estradiol. Women with breast cancer gene mutations (BRCAm) are counseled to undergo oophorectomy prior to SM to significantly reduce their risk of developing breast, ovarian, and cervical cancers. There is limited evidence of the neurological effects of ovarian removal prior to the age of SM showing women without the BRCAm had cortical thinning in medial temporal lobe structures. A second study in women with BRCAm and bilateral salpingo-oophorectomy (BSO) noted changes in cognition. METHODS: The present, cross-sectional study examined whole-brain differences in gray matter (GM) volume using high-resolution, quantitative magnetic resonance imaging in women with BRCAm and intact ovaries (BRCA-preBSO [study cohort with BRCA mutation prior to oophorectomy]; n = 9) and after surgery with (BSO + estradiol-based therapy [ERT]; n = 10) and without (BSO; n = 10) postsurgical estradiol hormone therapy compared with age-matched women (age-matched controls; n = 10) with their ovaries. RESULTS: The BRCA-preBSO and BSO groups showed significantly lower GM volume in the left medial temporal and frontal lobe structures. BSO + ERT exhibited few areas of lower GM volume compared with age-matched controls. Novel to this study, we also observed that all three BRCAm groups exhibited significantly higher GM volume compared with age-matched controls, suggesting continued plasticity. CONCLUSIONS: The present study provides evidence, through lower GM volume, to support both the possibility that the BRCAm, alone, and early life BSO may play a role in increasing the risk for late-life dementia. At least for BRCAm with BSO, postsurgical ERT seems to ameliorate GM losses.

2.
Geroscience ; 45(3): 1967-1985, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37162700

RESUMO

Changes in functional brain connectivity (FBC) may indicate how lifestyle modifications can prevent the progression to dementia; FBC identifies areas that are spatially separate but temporally synchronized in their activation and is altered in those with mild cognitive impairment (MCI), a prodromal state between healthy cognitive aging and dementia. Participants with MCI were randomly assigned to one of five study arms. Three times per week for 20-weeks, participants performed 30-min of (control) cognitive training, followed by 60-min of (control) physical exercise. Additionally, a vitamin D3 (10,000 IU/pill) or a placebo capsule was ingested three times per week for 20-weeks. Using the CONN toolbox, we measured FBC change (Post-Pre) across four statistical models that collapsed for and/or included some or all study arms. We conducted Pearson correlations between FBC change and changes in physical and cognitive functioning. Our sample included 120 participants (mean age: 73.89 ± 6.50). Compared to the pure control, physical exercise (model one; p-False Discovery Rate (FDR) < 0.01 & < 0.05) with cognitive training (model two; p-FDR = < 0.001), and all three interventions combined (model four; p-FDR = < 0.01) demonstrated an increase in FBC between regions of the Default-Mode Network (i.e., hippocampus and angular gyrus). After controlling for false discovery rate, there were no significant correlations between change in connectivity and change in cognitive or physical function. Physical exercise alone appears to be as efficacious as combined interventional strategies in altering FBC, but implications for behavioral outcomes remain unclear.


Assuntos
Disfunção Cognitiva , Demência , Humanos , Idoso , Idoso de 80 Anos ou mais , Colecalciferol , Treino Cognitivo , Disfunção Cognitiva/terapia , Encéfalo , Exercício Físico/fisiologia , Exercício Físico/psicologia
3.
Geroscience ; 45(2): 1033-1048, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36539590

RESUMO

Functional brain connectivity (FBC), or areas that are anatomically separate but temporally synchronized in their activation, represent a sensitive biomarker for monitoring dementia progression. It is unclear whether frailty is associated with FBC in those at higher risk of progression to dementia (e.g., mild cognitive impairment -MCI-) and if sex plays a role. We used baseline data from the SYNERGIC trial, including participants with MCI that received brain MRI. In this cross-sectional analyses (n = 100), we measured frailty using a deficit accumulation frailty index. Using the CONN toolbox, we assessed FBC of networks and regions of interest across the entire connectome. We used Pearson's correlation to investigate the relationship between FBC and frailty index in the full sample and by sex. We also divided the full sample and each sex into tertiles based upon their frailty index score and then assessed between-tertile differences in FBC. The full sample (cluster: size = 291 p-FDR < 0.05) and males (cluster: size = 993 and 451 p-FDR < 0.01) demonstrated that increasing (stronger) connectivity between the right hippocampus and clusters in the temporal gyrus was positively correlated with increasing (worse) frailty. Males also demonstrated between-tertile differences in right hippocampus connectivity to clusters in the lateral occipital cortex (cluster: size = 289 p-FDR < 0.05). Regardless of frailty status, females demonstrated stronger within-network connectivity of the Default-Mode (p = 0.024). Our results suggest that increasing (worse) frailty was associated with increasing (stronger) connectivity between regions not typically linked, which may reflect a compensation tactic by the plastic brain. Furthermore, the relationship between the two variables appears to differ by sex. Our results may help elucidate why specific individuals progress to a dementia syndrome. NCT02808676. https://www.clinicaltrials.gov/ct2/show/NCT02808676.


Assuntos
Disfunção Cognitiva , Demência , Fragilidade , Idoso , Feminino , Humanos , Masculino , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Demência/complicações , Fragilidade/complicações
4.
Diam Relat Mater ; 118: 108542, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34334952

RESUMO

Amidst a global pandemic, a precise and widely accessible rapid detection method is needed for accurate diagnosis and contact tracing. The lack of this technology was exposed through the outbreak of SARS-CoV-2 beginning in 2019. This study sets the foundation for the development of a boron doped diamond (BDD)-based impedimetric sensor. While specifically developed for use in the detection of SARS-CoV-2, this technology uses principles that could be adapted to detect other viruses in the future. Boron doped polycrystalline diamond electrodes were functionalized with a biotin-streptavidin linker complex and biotinylated anti-SARS-CoV-2 S1 antibodies. Electrodes were then incubated with the S1 subunit of the SARS-CoV-2 spike surface protein, and an electrical response was recorded using the changes to the electrode's charge transfer resistance (Rct), measured through electrochemical impedance spectroscopy (EIS). Detectable changes in the Rct were observed after 5-min incubation periods with S1 subunit concentrations as low as 1 fg/mL. Incubation with Influenza-B Hemagglutinin protein resulted in minimal change to the Rct, indicating specificity of the BDD electrode for the S1 subunit of SARS-CoV-2. Detection of the S1 subunit in a complex (cell culture) medium was also demonstrated by modifying the EIS protocol to minimize the effects of sample matrix binding. BDD films of varying surface morphologies were investigated, and material characterization was used to give insight into the microstructure-performance relationship of the BDD sensing surface.

5.
Hum Brain Mapp ; 42(14): 4722-4739, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34268814

RESUMO

Improvements in behavior are known to be accompanied by both structural and functional changes in the brain. However, whether those changes lead to more general improvements, beyond the behavior being trained, remains a contentious issue. We investigated whether training on one of two cognitive tasks would lead to either near transfer (that is, improvements on a quantifiably similar task) or far transfer (that is, improvements on a quantifiably different task), and furthermore, if such changes did occur, what the underlying neural mechanisms might be. Healthy adults (n = 16, 15 females) trained on either a verbal inhibitory control task or a visuospatial working memory task for 4 weeks, over the course of which they received five diffusion tensor imaging scans. Two additional tasks served as measures of near and far transfer. Behaviorally, participants improved on the task that they trained on, but did not improve on cognitively similar tests (near transfer), nor cognitively dissimilar tests (far transfer). Extensive changes to white matter microstructure were observed, with verbal inhibitory control training leading to changes in a left-lateralized network of frontotemporal and occipitofrontal tracts, and visuospatial working memory training leading to changes in right-lateralized frontoparietal tracts. Very little overlap was observed in changes between the two training groups. On the basis of these results, we suggest that near and far transfer were not observed because the changes in white matter tracts associated with training on each task are almost entirely nonoverlapping with, and therefore afford no advantages for, the untrained tasks.


Assuntos
Córtex Cerebral/anatomia & histologia , Imagem de Tensor de Difusão , Função Executiva/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Transferência de Experiência/fisiologia , Substância Branca/anatomia & histologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Estudos Longitudinais , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto Jovem
6.
Brain Topogr ; 34(5): 598-607, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33970388

RESUMO

The current state of label conventions used to describe brain networks related to executive functions is highly inconsistent, leading to confusion among researchers regarding network labels. Visually similar networks are referred to by different labels, yet these same labels are used to distinguish networks within studies. We performed a literature review of fMRI studies and identified nine frequently-used labels that are used to describe topographically or functionally similar neural networks: central executive network (CEN), cognitive control network (CCN), dorsal attention network (DAN), executive control network (ECN), executive network (EN), frontoparietal network (FPN), working memory network (WMN), task positive network (TPN), and ventral attention network (VAN). Our aim was to meta-analytically determine consistency of network topography within and across these labels. We hypothesized finding considerable overlap in the spatial topography among the neural networks associated with these labels. An image-based meta-analysis was performed on 158 group-level statistical maps (SPMs) received from authors of 69 papers listed on PubMed. Our results indicated that there was very little consistency in the SPMs labeled with a given network name. We identified four clusters of SPMs representing four spatially distinct executive function networks. We provide recommendations regarding label nomenclature and propose that authors looking to assign labels to executive function networks adopt this template set for labeling networks.


Assuntos
Mapeamento Encefálico , Função Executiva , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem
7.
Micromachines (Basel) ; 12(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530395

RESUMO

Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.

8.
J Am Ceram Soc ; 103(11)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33658725

RESUMO

We report on a recent workshop dedicated to additive manufacturing (AM) of ceramics that was held at the National Institute of Standards and Technology (NIST) in November 2019. This two-day all-invited meeting brought together experts from industry, government agencies and academia to review the state of the field and identify the most pressing applied materials research and metrology issues which, if addressed, could accelerate the incorporation of AM methods into commercial ceramic manufacturing. Besides the AM technologies, the discussions included consideration of the necessary post-processing steps. We highlight some of the successes and challenges for the adoption of ceramics AM on an industrial scale, as viewed by the workshop participants. We also propose actions for the ceramic community to facilitate the wider commercialization of these fabrication methods.

10.
Sci Rep ; 9(1): 13590, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537890

RESUMO

Altered neural mechanisms are well-acknowledged in irritable bowel syndrome (IBS), a disorder of brain-gut-communication highly comorbid with anxiety and depression. As a key hub in corticolimbic inhibition, medial prefrontal cortex (mPFC) may be involved in disturbed emotion regulation in IBS. However, aberrant mPFC excitatory and inhibitory neurotransmission potentially contributing to psychological symptoms in IBS remains unknown. Using quantitative magnetic resonance spectroscopy (qMRS), we compared mPFC glutamate + glutamine (Glx) and γ-aminobutyric acid (GABA+) concentrations in 64 women with IBS and 32 age-matched healthy women (HCs) and investigated their association with anxiety and depression in correlational and subgroup analyses. Applying functional magnetic resonance imaging (fMRI), we explored whether altered neurotransmission was paralleled by aberrant mPFC resting-state functional connectivity (FC). IBS patients did not differ from HCs with respect to mPFC GABA+ or Glx levels. Anxiety was positively associated with mPFC GABA+ concentrations in IBS, whereas Glx was unrelated to psychological or gastrointestinal symptoms. Subgroup comparisons of patients with high or low anxiety symptom severity and HCs revealed increased GABA+ in patients with high symptom severity, and lower mPFC FC with adjacent anterior cingulate cortex (ACC), a crucial region of emotion modulation. Our findings provide novel evidence that altered prefrontal inhibitory neurotransmission may be linked to anxiety in IBS.


Assuntos
Sintomas Afetivos/diagnóstico por imagem , Glutamina/metabolismo , Síndrome do Intestino Irritável/psicologia , Córtex Pré-Frontal/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Sintomas Afetivos/etiologia , Sintomas Afetivos/metabolismo , Estudos de Casos e Controles , Feminino , Ácido Glutâmico/metabolismo , Humanos , Síndrome do Intestino Irritável/diagnóstico por imagem , Síndrome do Intestino Irritável/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
11.
Neuroimage Clin ; 23: 101946, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31491835

RESUMO

Olfactory dysfunction is an early manifestation of Parkinson's disease (PD). The present study aimed to illustrate potential differences between PD patients and healthy controls in terms of neural activity and functional connectivity within the olfactory brain network. Twenty PD patients and twenty healthy controls were examined with olfactory fMRI and resting-state fMRI. Data analysis of olfactory fMRI included data-driven tensorial independent component (ICA) and task-driven general linear model (GLM) analyses. Data analysis of resting-state fMRI included probabilistic ICA based on temporal concatenation and functional connectivity analysis within the olfactory network. ICA of olfactory fMRI identified an olfactory network consisting of the posterior piriform cortex, insula, right orbitofrontal cortex and thalamus. Recruitment of this network was less significant for PD patients. GLM analysis revealed significantly lower activity in the insula bilaterally and the right orbitofrontal cortex in PD compared to healthy controls but no significant differences in the olfactory cortex itself. Analysis of resting-state fMRI did not reveal any differences in the functional connectivity within the olfactory, default mode, salience or central executive networks between the two groups. In conclusion, olfactory dysfunction in PD is associated with less significant recruitment of the olfactory brain network. ICA could demonstrate differences in both the olfactory cortex and its main projections, compared to GLM that revealed differences only on the latter. Resting-state fMRI did not reveal any significant differences in functional connectivity within the olfactory, default mode, salience and central executive networks in this cohort.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Percepção Olfatória/fisiologia , Doença de Parkinson/fisiopatologia , Idoso , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem
12.
Pain ; 160(9): 2004-2012, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31045748

RESUMO

Irritable bowel syndrome (IBS) is a visceral pain condition with psychological comorbidity. Brain imaging studies in IBS demonstrate altered function in anterior insula (aINS), a key hub for integration of interoceptive, affective, and cognitive processes. However, alterations in aINS excitatory and inhibitory neurotransmission as putative biochemical underpinnings of these functional changes remain elusive. Using quantitative magnetic resonance spectroscopy, we compared women with IBS and healthy women (healthy controls [HC]) with respect to aINS glutamate + glutamine (Glx) and γ-aminobutyric acid (GABA+) concentrations and addressed possible associations with symptoms. Thirty-nine women with IBS and 21 HC underwent quantitative magnetic resonance spectroscopy of bilateral aINS to assess Glx and GABA+ concentrations. Questionnaire data from all participants and prospective symptom-diary data from patients were obtained for regression analyses of neurotransmitter concentrations with IBS-related and psychological parameters. Concentrations of Glx were lower in IBS compared with HC (left aINS P < 0.05, right aINS P < 0.001), whereas no group differences were detected for GABA+ concentrations. Lower right-lateralized Glx concentrations in patients were substantially predicted by longer pain duration, while less frequent use of adaptive pain-coping predicted lower Glx in left aINS. Our findings provide first evidence for reduced excitatory but unaltered inhibitory neurotransmitter levels in aINS in IBS. The results also indicate a functional lateralization of aINS with a stronger involvement of the right hemisphere in perception of abdominal pain and of the left aINS in cognitive pain regulation. Our findings suggest that glutaminergic deficiency may play a role in pain processing in IBS.


Assuntos
Dor Abdominal/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Síndrome do Intestino Irritável/metabolismo , Ácido gama-Aminobutírico/metabolismo , Dor Abdominal/diagnóstico por imagem , Dor Abdominal/etiologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Agonistas de Aminoácidos Excitatórios/metabolismo , Aminoácidos Excitatórios/metabolismo , Feminino , Humanos , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Pessoa de Meia-Idade , Neurotransmissores/metabolismo , Adulto Jovem
13.
Neuroimage Clin ; 21: 101602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30472166

RESUMO

Changes in brain-gut interactions have been implicated in the pathophysiology of chronic visceral pain in irritable bowel syndrome (IBS). Different mechanisms of sensitization of visceral afferent pathways may contribute to the chronic visceral pain reports and associated brain changes that characterize IBS. They include increased gut permeability and gut associated immune system activation, and an imbalance in descending pain inhibitory and facilitatory mechanisms. In order to study the involvement of these mechanisms, correlations between gut epithelial permeability and live bacterial passage, and structural and functional brain connectivity were measured in women with moderate-to-severe IBS and healthy women. The relationships between gut permeability and functional and anatomical connectivity were significantly altered in IBS compared with the healthy women. IBS participants with lower epithelial permeability reported increased IBS symptoms, which was associated with increased functional and structural connectivity in endogenous pain facilitation regions. The findings suggest that relationships between gut permeability and the brain are significantly altered in IBS and suggest the existence of IBS subtypes based on these interactions.


Assuntos
Encéfalo/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Dor/fisiopatologia , Permeabilidade , Dor Visceral/fisiopatologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem
14.
Chem Senses ; 43(6): 389-398, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29726890

RESUMO

Studying olfaction with functional magnetic resonance imaging (fMRI) poses various methodological challenges. This study aimed to investigate the effects of stimulation length and repetition time (TR) on the activation pattern of 4 olfactory brain regions: the anterior and the posterior piriform cortex, the orbitofrontal cortex, and the insula. Twenty-two healthy participants with normal olfaction were examined with fMRI, with 2 stimulation lengths (6 s and 15 s) and 2 TRs (0.901 s and 1.34 s). Data were analyzed using General Linear Model (GLM), Tensorial Independent Component Analysis (TICA), and by plotting the event-related time course of brain activation in the 4 olfactory regions of interest. The statistical analysis of the time courses revealed that short TR was associated with more pronounced signal increase and short stimulation was associated with shorter time to peak signal. Additionally, both long stimulation and short TR were associated with oscillatory time courses, whereas both short stimulation and short TR resulted in more typical time courses. GLM analysis showed that the combination of short stimulation and short TR could result in visually larger activation within these olfactory areas. TICA validated that the tested paradigm was spatially and temporally associated with a functionally connected network that included all 4 olfactory regions. In conclusion, the combination of short stimulation and short TR is associated with higher signal increase and shorter time to peak, making it more amenable to standard GLM-type analyses than long stimulation and long TR, and it should, thus, be preferable for olfactory fMRI.


Assuntos
Imageamento por Ressonância Magnética , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Adulto , Mapeamento Encefálico , Humanos , Masculino , Odorantes , Condutos Olfatórios/patologia , Fatores de Tempo
15.
Brain Imaging Behav ; 12(2): 411-424, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28321606

RESUMO

The study investigated brain activity changes during performance of a verbal working memory task in a population of adolescents with narcolepsy. Seventeen narcolepsy patients and twenty healthy controls performed a verbal working memory task during simultaneous fMRI and EEG acquisition. All subjects also underwent MRS to measure GABA and Glutamate concentrations in the medial prefrontal cortex. Activation levels in the default mode network and left middle frontal gyrus were examined to investigate whether narcolepsy is characterized by an imbalance in cognitive resources. Significantly increased deactivation within the default mode network during task performance was observed for the narcolepsy patients for both the encoding and recognition phases of the task. No evidence for task performance deficits or reduced activation within the left middle frontal gyrus was noted for the narcolepsy patients. Correlation analyses between the spectroscopy and fMRI data indicated that deactivation of the anterior aspect of the default mode in narcolepsy patients correlated more with increased concentrations of Glutamate and decreased concentrations of GABA. In contrast, deactivation in the default mode was correlated with increased concentrations of GABA and decreased concentrations of Glutamate in controls. The results suggested that narcolepsy is not characterized by a deficit in working memory but rather an imbalance of cognitive resources in favor of monitoring and maintaining attention over actual task performance. This points towards dysregulation within the sustained attention system being the origin behind self-reported cognitive difficulties in narcolepsy.


Assuntos
Encéfalo/fisiopatologia , Cognição/fisiologia , Narcolepsia/fisiopatologia , Narcolepsia/psicologia , Adolescente , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Feminino , Ácido Glutâmico/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Narcolepsia/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Fala/fisiologia , Percepção da Fala/fisiologia , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
16.
Neuroimage Clin ; 15: 449-457, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649489

RESUMO

Increased perception of visceral stimuli is a key feature of Irritable Bowel Syndrome (IBS). While altered resting-state functional connectivity (rsFC) has been also reported in IBS, the relationship between visceral hypersensitivity and aberrant rsFC is unknown. We therefore assessed rsFC within the salience, sensorimotor and default mode networks in patients with and without visceral hypersensitivity and in healthy controls (HCs). An exploratory resting-state functional magnetic resonance imaging study was performed in 41 women with IBS and 20 HCs. Group independent component analysis was used to derive intrinsic brain networks. Rectal thresholds were determined and patients were subdivided into groups with increased (hypersensitive IBS, N = 21) or normal (normosensitive IBS, N = 20) visceral sensitivity. Between-group comparisons of rsFC were carried-out using region-of-interest analyses and peak rsFC values were extracted for correlational analyses. Relative to normosensitive IBS, hypersensitive patients showed increased positive rsFC of pregenual anterior cingulate cortex and thalamus within the salience network and of posterior insula within the sensorimotor network. When compared to both hypersensitive IBS and HCs, normosensitive IBS showed decreased positive rsFC of amygdala and decreased negative rsFC in dorsal anterior insula within the DMN. DMN and sensorimotor network rsFC were associated with rectal perception thresholds, and rsFC in posterior insula was correlated with reported symptom severity in IBS. Our exploratory findings suggest that visceral sensitivity in IBS is related to changes in FC within resting-state networks associated with interoception, salience and sensory processing. These alterations may play an important role in hypervigilance and hyperalgesia in IBS.


Assuntos
Encéfalo/diagnóstico por imagem , Síndrome do Intestino Irritável/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Medição da Dor/métodos , Dor Visceral/diagnóstico por imagem , Adulto , Encéfalo/fisiopatologia , Feminino , Humanos , Síndrome do Intestino Irritável/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/fisiopatologia , Dor Visceral/fisiopatologia
17.
Front Neurosci ; 10: 544, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27932947

RESUMO

There is growing evidence as to the benefits of collecting BOLD fMRI data with increased sampling rates. However, many of the newly developed acquisition techniques developed to collect BOLD data with ultra-short TRs require hardware, software, and non-standard analytic pipelines that may not be accessible to all researchers. We propose to incorporate the method of shifted echo into a standard multi-slice, gradient echo EPI sequence to achieve a higher sampling rate with a TR of <1 s with acceptable spatial resolution. We further propose to incorporate temporal averaging of consecutively acquired EPI volumes to both ameliorate the reduced temporal signal-to-noise inherent in ultra-fast EPI sequences and reduce the data burden. BOLD data were collected from 11 healthy subjects performing a simple, event-related visual-motor task with four different EPI sequences: (1) reference EPI sequence with TR = 1440 ms, (2) shifted echo EPI sequence with TR = 700 ms, (3) shifted echo EPI sequence with every two consecutively acquired EPI volumes averaged and effective TR = 1400 ms, and (4) shifted echo EPI sequence with every four consecutively acquired EPI volumes averaged and effective TR = 2800 ms. Both the temporally averaged sequences exhibited increased temporal signal-to-noise over the shifted echo EPI sequence. The shifted echo sequence with every two EPI volumes averaged also had significantly increased BOLD signal change compared with the other three sequences, while the shifted echo sequence with every four EPI volumes averaged had significantly decreased BOLD signal change compared with the other three sequences. The results indicated that incorporating the method of shifted echo into a standard multi-slice EPI sequence is a viable method for achieving increased sampling rate for collecting event-related BOLD data. Further, consecutively averaging every two consecutively acquired EPI volumes significantly increased the measured BOLD signal change and the subsequently calculated activation map statistics.

18.
Chem Commun (Camb) ; 52(82): 12175-12178, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27722523

RESUMO

Two formamidinate bridged dirhodium(ii,ii) complexes with chelating diimine ligands L, [Rh2(µ-DTolF)2(L)2]2+, were shown to electrocatalytically reduce CO2 in the presence of H2O. Analysis of the reaction mixture and headspace following bulk electrolysis revealed H2 and HCOOH as the major products. The variation in relative product formation is discussed.

19.
Front Hum Neurosci ; 10: 369, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536225

RESUMO

Narcolepsy is a chronic sleep disorder caused by a loss of hypocretin-1 producing neurons in the hypothalamus. Previous neuroimaging studies have investigated brain function in narcolepsy during rest using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In addition to hypothalamic and thalamic dysfunction they showed aberrant prefrontal perfusion and glucose metabolism in narcolepsy. Given these findings in brain structure and metabolism in narcolepsy, we anticipated that changes in functional magnetic resonance imaging (fMRI) resting state network (RSN) dynamics might also be apparent in patients with narcolepsy. The objective of this study was to investigate and describe brain microstate activity in adolescents with narcolepsy and correlate these to RSNs using simultaneous fMRI and electroencephalography (EEG). Sixteen adolescents (ages 13-20) with a confirmed diagnosis of narcolepsy were recruited and compared to age-matched healthy controls. Simultaneous EEG and fMRI data were collected during 10 min of wakeful rest. EEG data were analyzed for microstates, which are discrete epochs of stable global brain states obtained from topographical EEG analysis. Functional MRI data were analyzed for RSNs. Data showed that narcolepsy patients were less likely than controls to spend time in a microstate which we found to be related to the default mode network and may suggest a disruption of this network that is disease specific. We concluded that adolescents with narcolepsy have altered resting state brain dynamics.

20.
Inorg Chem ; 54(20): 10042-8, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26406159

RESUMO

Formamidinate-bridged Rh2(II,II) complexes containing diimine ligands of the formula cis-[Rh2(II,II)(µ-DTolF)2(NN)2](2+) (Rh2-NN2), where DTolF = p-ditolylformamidinate and NN = dppn (benzo[i]dipyrido[3,2-a:2',3'-h]quinoxaline), dppz (dipyrido[3,2-a:2',3'-c]phenazine), and phen (1,10-phenanthroline), electrocatalytically reduce H(+) to H2 in DMF solutions containing CH3COOH at a glassy carbon electrode. Cathodic scans in the absence of acid display a Rh(III,II/II,II) reduction at -0.90 V vs Fc(+)/Fc followed by NN(0/-) reduction at -1.13, -1.36, and -1.65 V for Rh2-dppn2, Rh2-dppz2, and Rh2-phen2, respectively. Upon the addition of acid, Rh2-dppn2 and Rh2-dppz2 undergo reduction-protonation-reduction at each pyrazine-containing NN ligand prior to the Rh2(II,II/II,I) reduction. The Rh2(II,I) species is then protonated at one of the metal centers, resulting in the formation of the corresponding Rh2(II,III)-hydride. In the case of Rh2-phen2, the reduction of the phen ligand is followed by intramolecular electron transfer to the Rh2(II,II) core in the presence of protons to form a Rh2(II,III)-hydride species. Further reduction and protonation at the Rh2 core for all three complexes rapidly catalyzes H2 formation with varied calculated turnover frequencies (TOF) and overpotential values (η): 2.6 × 10(4) s(-1) and 0.56 V for Rh2-dppn, 2.8 × 10(4) s(-1) and 0.50 V for Rh2-dppz2, and 5.9 × 10(4) s(-1) and 0.64 V for Rh2-phen2. Bulk electrolysis confirmed H2 formation, and further CH3COOH addition regenerates H2 production, attesting to the robust nature of the architecture. The cis-[Rh2(II,II)(µ-DTolF)2(NN)2](2+) architecture benefits by combining electron-rich formamidinate bridges, a redox-active Rh2(II,II) core, and electron-accepting NN diimine ligands to allow for the electrocatalysis of H(+) substrate to H2 fuel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...