Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS One ; 18(11): e0286925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917623

RESUMO

The murine Bordetella pertussis challenge model has been utilized in preclinical research for decades. Currently, inconsistent methodologies are employed by researchers across the globe, making it difficult to compare findings. The objective of this work was to utilize the CD-1 mouse model with two routes of challenge, intranasal and aerosol administration of B. pertussis, to understand the differences in disease manifestation elicited via each route. We observed that both routes of B. pertussis challenge result in dose-dependent colonization of the respiratory tract, but overall, intranasal challenge led to higher bacterial burden in the nasal lavage, trachea, and lung. Furthermore, high dose intranasal challenge results in induction of leukocytosis and pro-inflammatory cytokine responses compared to aerosol challenge. These data highlight crucial differences in B. pertussis challenge routes that should be considered during experimental design.


Assuntos
Bordetella pertussis , Coqueluche , Animais , Camundongos , Camundongos Endogâmicos BALB C , Aerossóis e Gotículas Respiratórios , Administração Intranasal , Vacina contra Coqueluche
2.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37815108

RESUMO

Machine-learned interatomic potentials are fast becoming an indispensable tool in computational materials science. One approach is the ephemeral data-derived potential (EDDP), which was designed to accelerate atomistic structure prediction. The EDDP is simple and cost-efficient. It relies on training data generated in small unit cells and is fit using a lightweight neural network, leading to smooth interactions which exhibit the robust transferability essential for structure prediction. Here, we present a variety of applications of EDDPs, enabled by recent developments of the open-source EDDP software. New features include interfaces to phonon and molecular dynamics codes, as well as deployment of the ensemble deviation for estimating the confidence in EDDP predictions. Through case studies ranging from elemental carbon and lead to the binary scandium hydride and the ternary zinc cyanide, we demonstrate that EDDPs can be trained to cover wide ranges of pressures and stoichiometries, and used to evaluate phonons, phase diagrams, superionicity, and thermal expansion. These developments complement continued success in accelerated structure prediction.

3.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37870138

RESUMO

We introduce ACEpotentials.jl, a Julia-language software package that constructs interatomic potentials from quantum mechanical reference data using the Atomic Cluster Expansion [R. Drautz, Phys. Rev. B 99, 014104 (2019)]. As the latter provides a complete description of atomic environments, including invariance to overall translation and rotation as well as permutation of like atoms, the resulting potentials are systematically improvable and data efficient. Furthermore, the descriptor's expressiveness enables use of a linear model, facilitating rapid evaluation and straightforward application of Bayesian techniques for active learning. We summarize the capabilities of ACEpotentials.jl and demonstrate its strengths (simplicity, interpretability, robustness, performance) on a selection of prototypical atomistic modelling workflows.

4.
Front Cell Infect Microbiol ; 13: 1117844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124031

RESUMO

The rise of antimicrobial-resistant bacterial infections is a crucial health concern in the 21st century. In particular, antibiotic-resistant Pseudomonas aeruginosa causes difficult-to-treat infections associated with high morbidity and mortality. Unfortunately, the number of effective therapeutic interventions against antimicrobial-resistant P. aeruginosa infections continues to decline. Therefore, discovery and development of alternative treatments are necessary. Here, we present pre-clinical efficacy studies on an anti-P. aeruginosa therapeutic monoclonal antibody. Using hybridoma technology, we generated a monoclonal antibody and characterized its binding to P. aeruginosa in vitro using ELISA and fluorescence correlation spectroscopy. We also characterized its function in vitro and in vivo against P. aeruginosa. The anti-P. aeruginosa antibody (WVDC-5244) bound P. aeruginosa clinical strains of various serotypes in vitro, even in the presence of alginate exopolysaccharide. In addition, WVDC-5244 induced opsonophagocytic killing of P. aeruginosa in vitro in J774.1 murine macrophage, and complement-mediated killing. In a mouse model of acute pneumonia, prophylactic administration of WVDC-5244 resulted in an improvement of clinical disease manifestations and reduction of P. aeruginosa burden in the respiratory tract compared to the control groups. This study provides promising pre-clinical efficacy data on a new monoclonal antibody with therapeutic potential for P. aeruginosa infections.


Assuntos
Pneumonia , Infecções por Pseudomonas , Camundongos , Animais , Pseudomonas aeruginosa , Pneumonia/microbiologia , Anticorpos Monoclonais/uso terapêutico , Hibridomas/metabolismo , Proteínas do Sistema Complemento , Infecções por Pseudomonas/microbiologia
5.
J Chem Phys ; 158(12): 124801, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003740

RESUMO

Differentiable programming has facilitated numerous methodological advances in scientific computing. Physics engines supporting automatic differentiation have simpler code, accelerating the development process and reducing the maintenance burden. Furthermore, fully differentiable simulation tools enable direct evaluation of challenging derivatives-including those directly related to properties measurable by experiment-that are conventionally computed with finite difference methods. Here, we investigate automatic differentiation in the context of orbital-free density functional theory (OFDFT) simulations of materials, introducing PROFESS-AD. Its automatic evaluation of properties derived from first derivatives, including functional potentials, forces, and stresses, facilitates the development and testing of new density functionals, while its direct evaluation of properties requiring higher-order derivatives, such as bulk moduli, elastic constants, and force constants, offers more concise implementations than conventional finite difference methods. For these reasons, PROFESS-AD serves as an excellent prototyping tool and provides new opportunities for OFDFT.

6.
NPJ Vaccines ; 7(1): 143, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357402

RESUMO

Whole cell vaccines are complex mixtures of antigens, immunogens, and sometimes adjuvants that can trigger potent and protective immune responses. In some instances, such as whole cell Bordetella pertussis vaccination, the immune response to vaccination extends beyond the pathogen the vaccine was intended for and contributes to protection against other clinically significant pathogens. In this study, we describe how B. pertussis whole cell vaccination protects mice against acute pneumonia caused by Pseudomonas aeruginosa. Using ELISA and western blot, we identified that B. pertussis whole cell vaccination induces production of antibodies that bind to lab-adapted and clinical strains of P. aeruginosa, regardless of immunization route or adjuvant used. The cross-reactive antigens were identified using immunoprecipitation, mass spectrometry, and subsequent immunoblotting. We determined that B. pertussis GroEL and OmpA present in the B. pertussis whole cell vaccine led to production of antibodies against P. aeruginosa GroEL and OprF, respectively. Finally, we showed that recombinant B. pertussis OmpA was sufficient to induce protection against P. aeruginosa acute murine pneumonia. This study highlights the potential for use of B. pertussis OmpA as a vaccine antigen for prevention of P. aeruginosa infection, and the potential of broadly protective antigens for vaccine development.

7.
Sci Rep ; 12(1): 8791, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614085

RESUMO

Calcium (Ca2+) is well known as a second messenger in eukaryotes, where Ca2+ signaling controls life-sustaining cellular processes. Although bacteria produce the components required for Ca2+ signaling, little is known about the mechanisms of bacterial Ca2+ signaling. Previously, we have identified a putative Ca2+-binding protein EfhP (PA4107) with two canonical EF-hand motifs and reported that EfhP mediates Ca2+ regulation of virulence factors production and infectivity in Pseudomonas aeruginosa, a human pathogen causing life-threatening infections. Here, we show that EfhP selectively binds Ca2+ with 13.7 µM affinity, and that mutations at the +X and -Z positions within each or both EF-hand motifs abolished Ca2+ binding. We also show that the hydrophobicity of EfhP increased in a Ca2+-dependent manner, however no such response was detected in the mutated proteins. 15 N-NMR showed Ca2+-dependent chemical shifts in EfhP confirming Ca2+-binding triggered structural rearrangements in the protein. Deletion of efhP impaired P. aeruginosa survival in macrophages and virulence in vivo. Disabling EfhP Ca2+ binding abolished Ca2+ induction of pyocyanin production in vitro. These data confirm that EfhP selectively binds Ca2+, which triggers its structural changes required for the Ca2+ regulation of P. aeruginosa virulence, thus establishing the role of EfhP as a Ca2+ sensor.


Assuntos
Motivos EF Hand , Pseudomonas aeruginosa , Cálcio/metabolismo , Humanos , Pseudomonas aeruginosa/fisiologia , Piocianina/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Front Immunol ; 13: 838504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211125

RESUMO

Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization. Vaccine-induced memory results from follicular responses and germinal center formation; therefore, cell populations and cytokines involved with memory were measured alongside protection from challenge. Both aP and wP immunization elicit protection from intranasal challenge by decreasing bacterial burden in both the upper and lower airways, and by generation of pertussis specific antibody responses in mice. Responses to wP vaccination were characterized by a significant increase in T follicular helper cells in the draining lymph nodes and CXCL13 levels in sera compared to aP mice. In addition, a population of B. pertussis+ memory B cells was found to be unique to wP vaccinated mice. This population peaked post-boost, and was measurable out to day 365 post-vaccination. Anti-B. pertussis and anti-pertussis toxoid antibody secreting cells increased one day after boost and remained high at day 532. The data suggest that follicular responses, and in particular CXCL13 levels in sera, could be monitored in pre-clinical and clinical studies for the development of the next-generation pertussis vaccines.


Assuntos
Bordetella pertussis/imunologia , Vacina contra Coqueluche/imunologia , Células T Auxiliares Foliculares/imunologia , Coqueluche/imunologia , Animais , Anticorpos Antibacterianos/sangue , Quimiocina CXCL13/sangue , Imunização Secundária , Memória Imunológica , Camundongos , Fatores de Tempo , Vacinação , Coqueluche/prevenção & controle
9.
J Phys Chem A ; 125(7): 1650-1660, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33586978

RESUMO

The properties of a material depend on how its atoms are arranged, and predicting these arrangements from first principles is a longstanding challenge. Orbital-free density functional theory provides a quantum-mechanical model based solely on the electron density, not individual wave functions. The resulting speedups make it attractive for random structure searching, whereby random configurations of atoms are relaxed to local minima in the energy landscape. We use this strategy to map the low-energy crystal structures of Li, Na, Mg, and Al at zero pressure. For Li and Na, our searching finds numerous close-packed polytypes of almost-equal energy, consistent with previous efforts to understand their low-temperature forms. For Mg and Al, the searching identifies the expected ground state structures unambiguously, in addition to revealing other low-energy structures. This new role for orbital-free density functional theory-particularly as continued advances make it accurate for more of the periodic table-will expedite crystal structure prediction over wide ranges of compositions and pressures.

10.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33199354

RESUMO

Pseudomonas aeruginosa is a Gram-negative pathogen that causes severe pulmonary infections associated with high morbidity and mortality in immunocompromised patients. The development of a vaccine against P. aeruginosa could help prevent infections caused by this highly antibiotic-resistant microorganism. We propose that identifying the vaccine-induced correlates of protection against P. aeruginosa will facilitate the development of a vaccine against this pathogen. In this study, we investigated the mechanistic correlates of protection of a curdlan-adjuvanted P. aeruginosa whole-cell vaccine (WCV) delivered intranasally. The WCV significantly decreased bacterial loads in the respiratory tract after intranasal P. aeruginosa challenge and raised antigen-specific antibody titers. To study the role of B and T cells during vaccination, anti-CD4, -CD8, and -CD20 depletions were performed prior to WCV vaccination and boosting. The depletion of CD4+, CD8+, or CD20+ cells had no impact on the bacterial burden in mock-vaccinated animals. However, depletion of CD20+ B cells, but not CD8+ or CD4+ T cells, led to the loss of vaccine-mediated bacterial clearance. Also, passive immunization with serum from WCV group mice alone protected naive mice against P. aeruginosa, supporting the role of antibodies in clearing P. aeruginosa We observed that in the absence of T cell-dependent antibody production, mice vaccinated with the WCV were still able to reduce bacterial loads. Our results collectively highlight the importance of the humoral immune response for protection against P. aeruginosa and suggest that the production of T cell-independent antibodies may be sufficient for bacterial clearance induced by whole-cell P. aeruginosa vaccination.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antibacterianos/imunologia , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Pseudomonas/administração & dosagem , Vacinas contra Pseudomonas/imunologia , Animais , Humanos , Imunização , Camundongos , Modelos Animais , Pneumonia Bacteriana/fisiopatologia , Infecções por Pseudomonas/fisiopatologia , Vacinação
11.
Vaccines (Basel) ; 8(4)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153066

RESUMO

Whole cell vaccines are frequently the first generation of vaccines tested for pathogens and can inform the design of subsequent acellular or subunit vaccines. For respiratory pathogens, administration of vaccines at the mucosal surface can facilitate the generation of a localized mucosal immune response. Here, we examined the innate and vaccine-induced immune responses to infection by two respiratory pathogens: Bordetella pertussis and Pseudomonas aeruginosa. In a model of intranasal administration of whole cell vaccines (WCVs) with the adjuvant curdlan, we examined local and systemic immune responses following infection. These studies showed that intranasal vaccination with a WCV led to a reduction of the bacterial burden in the airways of animals infected with the respective pathogen. However, there were unique changes in the cytokines produced, cells recruited, and inflammation at the site of infection. Both mucosal vaccinations induced antibodies that bind the target pathogen, but linear regression and principal component analysis revealed that protection from these pathogens is not solely related to antibody titer. Protection from P. aeruginosa correlated to a reduction in lung weight, blood lymphocytes and neutrophils, and the cytokines IL-6, TNF-α, KC/GRO, and IL-10, and promotion of serum IgG antibodies and the cytokine IFN-γ in the lung. Protection from B. pertussis infection correlated strongly with increased anti-B-pertussis serum IgG antibodies. These findings reveal valuable correlates of protection for mucosal vaccination that can be used for further development of both B. pertussis and P. aeruginosa vaccines.

12.
Front Immunol ; 10: 2497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708925

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic respiratory infections associated with morbidity and mortality, especially in patients with cystic fibrosis. Vaccination against P. aeruginosa before colonization may be a solution against these infections and improve the quality of life of at-risk patients. To develop a vaccine against P. aeruginosa, we formulated a novel peptide-based P. aeruginosa subunit vaccine based on the extracellular regions of one of its major siderophore receptors, FpvA. We evaluated the effectiveness and immunogenicity of the FpvA peptides conjugated to keyhole limpet hemocyanin (KLH) with the adjuvant curdlan in a murine vaccination and challenge model. Immunization with the FpvA-KLH vaccine decreased the bacterial burden and lung edema after P. aeruginosa challenge. Vaccination with FpvA-KLH lead to antigen-specific IgG and IgM antibodies in sera, and IgA antibodies in lung supernatant. FpvA-KLH immunized mice had an increase in recruitment of CD11b+ dendritic cells as well as resident memory CD4+ T cells in the lungs compared to non-vaccinated challenged mice. Splenocytes isolated from vaccinated animals showed that the FpvA-KLH vaccine with the adjuvant curdlan induces antigen-specific IL-17 production and leads to a Th17 type of immune response. These results indicate that the intranasal FpvA-KLH conjugate vaccine can elicit both mucosal and systemic immune responses. These observations suggest that the intranasal peptide-based FpvA-KLH conjugate vaccine with curdlan is a potential vaccine candidate against P. aeruginosa pneumonia.


Assuntos
Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Vacinas Conjugadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Administração Intranasal , Animais , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hemocianinas/química , Hemocianinas/imunologia , Humanos , Imunidade nas Mucosas , Imunização , Memória de Curto Prazo , Camundongos , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Vacinas contra Pseudomonas/administração & dosagem , Proteínas Recombinantes , Vacinas Conjugadas/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem
13.
NPJ Vaccines ; 4: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602318

RESUMO

Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation.

14.
Front Immunol ; 9: 2376, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405604

RESUMO

Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response.


Assuntos
Bordetella pertussis/imunologia , Células-Tronco Hematopoéticas/metabolismo , Coqueluche/imunologia , Coqueluche/microbiologia , Animais , Vacinas Bacterianas/imunologia , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Técnicas de Cultura de Células , Biologia Computacional/métodos , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Imunização , Camundongos , Recombinação V(D)J , Coqueluche/metabolismo
15.
PLoS Comput Biol ; 13(11): e1005818, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29149169

RESUMO

Resection of the bulk of a tumour often cannot eliminate all cancer cells, due to their infiltration into the surrounding healthy tissue. This may lead to recurrence of the tumour at a later time. We use a reaction-diffusion equation based model of tumour growth to investigate how the invasion front is delayed by resection, and how this depends on the density and behaviour of the remaining cancer cells. We show that the delay time is highly sensitive to qualitative details of the proliferation dynamics of the cancer cell population. The typically assumed logistic type proliferation leads to unrealistic results, predicting immediate recurrence. We find that in glioblastoma cell cultures the cell proliferation rate is an increasing function of the density at small cell densities. Our analysis suggests that cooperative behaviour of cancer cells, analogous to the Allee effect in ecology, can play a critical role in determining the time until tumour recurrence.


Assuntos
Neoplasias Encefálicas/metabolismo , Biologia Computacional/métodos , Glioblastoma/metabolismo , Modelos Biológicos , Recidiva Local de Neoplasia/metabolismo , Algoritmos , Neoplasias Encefálicas/cirurgia , Proliferação de Células , Difusão , Glioblastoma/cirurgia , Humanos
16.
J Comput Chem ; 38(17): 1552-1559, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28425568

RESUMO

Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital-free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc.

17.
Neuromodulation ; 20(1): 31-50, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28042909

RESUMO

INTRODUCTION: The use of neurostimulation for pain has been an established therapy for many decades and is a major tool in the arsenal to treat neuropathic pain syndromes. Level I evidence has recently been presented to substantiate the therapy, but this is balanced against the risk of complications of an interventional technique. METHODS: The Neurostimulation Appropriateness Consensus Committee (NACC) of the International Neuromodulation Society convened an international panel of well published and diverse physicians to examine the best practices for infection mitigation and management in patients undergoing neurostimulation. The NACC recommendations are based on evidence scoring and peer-reviewed literature. Where evidence is lacking the panel added expert opinion to establish recommendations. RESULTS: The NACC has made recommendations to improve care by reducing infection and managing this complication when it occurs. These evidence-based recommendations should be considered best practices in the clinical implantation of neurostimulation devices. CONCLUSION: Adhering to established standards can improve patient care and reduce the morbidity and mortality of infectious complications in patients receiving neurostimulation.


Assuntos
Consenso , Terapia por Estimulação Elétrica/efeitos adversos , Controle de Infecções/normas , Guias de Prática Clínica como Assunto , Comitê de Profissionais/normas , Humanos , Controle de Infecções/métodos , Infecções , Neuralgia/terapia
18.
Toxicol Pathol ; 43(8): 1149-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26511845

RESUMO

This article describes the results of comparisons of digitally scanned whole slide images (WSIs) and glass microscope slides for diagnosis of tissues under peer review by the National Toxicology Program. Findings in this article were developed as a result of the data collected from 6 pathology working groups (PWGs), 1 pathology peer review, and survey comments from over 25 participating pathologists. For each PWG, 6-14 pathologists examined 10-143 tissues per study from 6- and 9-month perinatal studies and 2-year carcinogenicity studies. Overall it was found that evaluation of WSIs is generally equivalent to using glass slides. Concordance of PWG consensus diagnoses based upon review of WSIs versus glass slides ranged from 74% to 100% (median 86%). The intra- and interobserver diagnostic variation did not appear to influence the conclusions of any study. Based upon user opinions collected from surveys, WSIs may be less optimal than glass slides for evaluation of subtle lesions, large complex lesions, small lesions in a large section of tissue, and foci of altered hepatocytes. These results indicate that, although there may be some limitations, the use of WSIs can effectively accomplish the objectives of a conventional glass slide review and definitely serves as a useful adjunct to the conduct of PWGs.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Patologia Clínica/métodos , Animais , Histocitoquímica , Humanos , Camundongos , Patologia/educação , Ratos
19.
Integr Comp Biol ; 55(4): 728-39, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25920507

RESUMO

One of the most-studied unsteady locomotor behaviors exhibited by fishes is the c-start escape response. Although the kinematics of these responses have been studied extensively and two well-defined kinematic stages have been documented, only a few studies have focused on hydrodynamic patterns generated by fishes executing escape behaviors. Previous work has shown that escape responses by bluegill sunfish generate three distinct vortex rings, each with central orthogonal jet flows, and here we extend this conclusion to two other species: stickleback and mosquitofish. Jet #1 is formed by the tail during Stage 1, and moves in the same direction as Stage-2 movement of the fish, thereby reducing final escape-velocity but also rotating the fish. Jet #2, in contrast, moves approximately opposite to the final direction of the fish's motion and contains the bulk of the total fluid-momentum powering the escape response. Jet #3 forms during Stage 2 in the mid-body region and moves in a direction approximately perpendicular to jets 1 and 2, across the direction of movement of the body. In this study, we used a mechanical controller to impulsively move passively flexible plastic panels of three different stiffnesses in heave, pitch, and heave + pitch motions to study the effects of stiffness on unsteady hydrodynamics of escape. We were able to produce kinematics very similar to those of fish c-starts and also to reproduce the 3-jet hydrodynamic pattern of the c-start using a panel of medium flexural stiffness and the combined heave + pitch motion. This medium-stiffness panel matched the measured stiffness of the near-tail region of fish bodies. This motion also produced positive power when the panel straightened during stage 2 of the escape response. More flexible and stiffer panels resulted in non-biological kinematics and patterns of flow for all motions. The use of simple flexible models with a mechanical controller and program of fish-like motion is a promising approach for studying unsteady behaviors of fish which can be difficult to manipulate experimentally in live animals.


Assuntos
Reação de Fuga/fisiologia , Peixes/fisiologia , Hidrodinâmica , Nadadeiras de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Atividade Motora , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...